Metamath Proof Explorer


Theorem en3lplem1

Description: Lemma for en3lp . (Contributed by Alan Sare, 28-Oct-2011)

Ref Expression
Assertion en3lplem1 ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → ( 𝑥 = 𝐴 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 simp3 ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → 𝐶𝐴 )
2 eleq2 ( 𝑥 = 𝐴 → ( 𝐶𝑥𝐶𝐴 ) )
3 1 2 syl5ibrcom ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → ( 𝑥 = 𝐴𝐶𝑥 ) )
4 tpid3g ( 𝐶𝐴𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } )
5 4 3ad2ant3 ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } )
6 inelcm ( ( 𝐶𝑥𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ )
7 5 6 sylan2 ( ( 𝐶𝑥 ∧ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ )
8 7 expcom ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → ( 𝐶𝑥 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) )
9 3 8 syld ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → ( 𝑥 = 𝐴 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) )