Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) |
2 |
|
eleq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐶 ∈ 𝑥 ↔ 𝐶 ∈ 𝐴 ) ) |
3 |
1 2
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 = 𝐴 → 𝐶 ∈ 𝑥 ) ) |
4 |
|
tpid3g |
⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
5 |
4
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
6 |
|
inelcm |
⊢ ( ( 𝐶 ∈ 𝑥 ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) |
7 |
5 6
|
sylan2 |
⊢ ( ( 𝐶 ∈ 𝑥 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) |
8 |
7
|
expcom |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 ∈ 𝑥 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) |
9 |
3 8
|
syld |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 = 𝐴 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) |