Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
2 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) |
3 |
1 2
|
e1a |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ 𝐶 ∈ 𝐴 ) |
4 |
|
tpid3g |
⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
5 |
3 4
|
e1a |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
6 |
|
idn2 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 = 𝐴 ▶ 𝑥 = 𝐴 ) |
7 |
|
eleq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐶 ∈ 𝑥 ↔ 𝐶 ∈ 𝐴 ) ) |
8 |
7
|
biimprd |
⊢ ( 𝑥 = 𝐴 → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ 𝑥 ) ) |
9 |
6 3 8
|
e21 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 = 𝐴 ▶ 𝐶 ∈ 𝑥 ) |
10 |
|
pm3.2 |
⊢ ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 𝐶 ∈ 𝑥 → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ 𝑥 ) ) ) |
11 |
5 9 10
|
e12 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 = 𝐴 ▶ ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ 𝑥 ) ) |
12 |
|
elex22 |
⊢ ( ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ 𝑥 ) → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
13 |
11 12
|
e2 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 = 𝐴 ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
14 |
13
|
in2 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ ( 𝑥 = 𝐴 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
15 |
14
|
in1 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 = 𝐴 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |