| Step | Hyp | Ref | Expression | 
						
							| 1 |  | en3lplem1 | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  =  𝐴  →  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅ ) ) | 
						
							| 2 |  | en3lplem1 | ⊢ ( ( 𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴  ∧  𝐴  ∈  𝐵 )  →  ( 𝑥  =  𝐵  →  ( 𝑥  ∩  { 𝐵 ,  𝐶 ,  𝐴 } )  ≠  ∅ ) ) | 
						
							| 3 | 2 | 3comr | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  =  𝐵  →  ( 𝑥  ∩  { 𝐵 ,  𝐶 ,  𝐴 } )  ≠  ∅ ) ) | 
						
							| 4 | 3 | a1d | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝑥  =  𝐵  →  ( 𝑥  ∩  { 𝐵 ,  𝐶 ,  𝐴 } )  ≠  ∅ ) ) ) | 
						
							| 5 |  | tprot | ⊢ { 𝐴 ,  𝐵 ,  𝐶 }  =  { 𝐵 ,  𝐶 ,  𝐴 } | 
						
							| 6 | 5 | ineq2i | ⊢ ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  =  ( 𝑥  ∩  { 𝐵 ,  𝐶 ,  𝐴 } ) | 
						
							| 7 | 6 | neeq1i | ⊢ ( ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅  ↔  ( 𝑥  ∩  { 𝐵 ,  𝐶 ,  𝐴 } )  ≠  ∅ ) | 
						
							| 8 | 7 | bicomi | ⊢ ( ( 𝑥  ∩  { 𝐵 ,  𝐶 ,  𝐴 } )  ≠  ∅  ↔  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅ ) | 
						
							| 9 | 4 8 | syl8ib | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝑥  =  𝐵  →  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅ ) ) ) | 
						
							| 10 |  | jao | ⊢ ( ( 𝑥  =  𝐴  →  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅ )  →  ( ( 𝑥  =  𝐵  →  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅ )  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅ ) ) ) | 
						
							| 11 | 1 9 10 | sylsyld | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅ ) ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  ∧  𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } )  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅ ) ) | 
						
							| 13 |  | en3lplem1 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶 )  →  ( 𝑥  =  𝐶  →  ( 𝑥  ∩  { 𝐶 ,  𝐴 ,  𝐵 } )  ≠  ∅ ) ) | 
						
							| 14 | 13 | 3coml | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  =  𝐶  →  ( 𝑥  ∩  { 𝐶 ,  𝐴 ,  𝐵 } )  ≠  ∅ ) ) | 
						
							| 15 | 14 | a1d | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝑥  =  𝐶  →  ( 𝑥  ∩  { 𝐶 ,  𝐴 ,  𝐵 } )  ≠  ∅ ) ) ) | 
						
							| 16 |  | tprot | ⊢ { 𝐶 ,  𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐵 ,  𝐶 } | 
						
							| 17 | 16 | ineq2i | ⊢ ( 𝑥  ∩  { 𝐶 ,  𝐴 ,  𝐵 } )  =  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } ) | 
						
							| 18 | 17 | neeq1i | ⊢ ( ( 𝑥  ∩  { 𝐶 ,  𝐴 ,  𝐵 } )  ≠  ∅  ↔  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅ ) | 
						
							| 19 | 15 18 | syl8ib | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝑥  =  𝐶  →  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅ ) ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  ∧  𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } )  →  ( 𝑥  =  𝐶  →  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅ ) ) | 
						
							| 21 |  | idd | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ) ) | 
						
							| 22 |  | dftp2 | ⊢ { 𝐴 ,  𝐵 ,  𝐶 }  =  { 𝑥  ∣  ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵  ∨  𝑥  =  𝐶 ) } | 
						
							| 23 | 22 | eleq2i | ⊢ ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  ↔  𝑥  ∈  { 𝑥  ∣  ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵  ∨  𝑥  =  𝐶 ) } ) | 
						
							| 24 | 21 23 | imbitrdi | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  𝑥  ∈  { 𝑥  ∣  ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵  ∨  𝑥  =  𝐶 ) } ) ) | 
						
							| 25 |  | abid | ⊢ ( 𝑥  ∈  { 𝑥  ∣  ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵  ∨  𝑥  =  𝐶 ) }  ↔  ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵  ∨  𝑥  =  𝐶 ) ) | 
						
							| 26 | 24 25 | imbitrdi | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵  ∨  𝑥  =  𝐶 ) ) ) | 
						
							| 27 |  | df-3or | ⊢ ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵  ∨  𝑥  =  𝐶 )  ↔  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∨  𝑥  =  𝐶 ) ) | 
						
							| 28 | 26 27 | imbitrdi | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∨  𝑥  =  𝐶 ) ) ) | 
						
							| 29 | 28 | imp | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  ∧  𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } )  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∨  𝑥  =  𝐶 ) ) | 
						
							| 30 | 12 20 29 | mpjaod | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  ∧  𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } )  →  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅ ) | 
						
							| 31 | 30 | ex | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐴 )  →  ( 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 }  →  ( 𝑥  ∩  { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  ∅ ) ) |