Step |
Hyp |
Ref |
Expression |
1 |
|
3onn |
⊢ 3o ∈ ω |
2 |
|
df-4o |
⊢ 4o = suc 3o |
3 |
|
en3 |
⊢ ( ( 𝐴 ∖ { 𝑥 } ) ≈ 3o → ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝐴 ∖ { 𝑥 } ) = { 𝑦 , 𝑧 , 𝑤 } ) |
4 |
|
qdassr |
⊢ ( { 𝑥 , 𝑦 } ∪ { 𝑧 , 𝑤 } ) = ( { 𝑥 } ∪ { 𝑦 , 𝑧 , 𝑤 } ) |
5 |
4
|
enp1ilem |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑥 } ) = { 𝑦 , 𝑧 , 𝑤 } → 𝐴 = ( { 𝑥 , 𝑦 } ∪ { 𝑧 , 𝑤 } ) ) ) |
6 |
5
|
eximdv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑤 ( 𝐴 ∖ { 𝑥 } ) = { 𝑦 , 𝑧 , 𝑤 } → ∃ 𝑤 𝐴 = ( { 𝑥 , 𝑦 } ∪ { 𝑧 , 𝑤 } ) ) ) |
7 |
6
|
2eximdv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝐴 ∖ { 𝑥 } ) = { 𝑦 , 𝑧 , 𝑤 } → ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝐴 = ( { 𝑥 , 𝑦 } ∪ { 𝑧 , 𝑤 } ) ) ) |
8 |
1 2 3 7
|
enp1i |
⊢ ( 𝐴 ≈ 4o → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝐴 = ( { 𝑥 , 𝑦 } ∪ { 𝑧 , 𝑤 } ) ) |