Metamath Proof Explorer


Theorem endisj

Description: Any two sets are equinumerous to two disjoint sets. Exercise 4.39 of Mendelson p. 255. (Contributed by NM, 16-Apr-2004)

Ref Expression
Hypotheses endisj.1 𝐴 ∈ V
endisj.2 𝐵 ∈ V
Assertion endisj 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑥𝑦 ) = ∅ )

Proof

Step Hyp Ref Expression
1 endisj.1 𝐴 ∈ V
2 endisj.2 𝐵 ∈ V
3 0ex ∅ ∈ V
4 1 3 xpsnen ( 𝐴 × { ∅ } ) ≈ 𝐴
5 1oex 1o ∈ V
6 2 5 xpsnen ( 𝐵 × { 1o } ) ≈ 𝐵
7 4 6 pm3.2i ( ( 𝐴 × { ∅ } ) ≈ 𝐴 ∧ ( 𝐵 × { 1o } ) ≈ 𝐵 )
8 xp01disj ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) = ∅
9 p0ex { ∅ } ∈ V
10 1 9 xpex ( 𝐴 × { ∅ } ) ∈ V
11 snex { 1o } ∈ V
12 2 11 xpex ( 𝐵 × { 1o } ) ∈ V
13 breq1 ( 𝑥 = ( 𝐴 × { ∅ } ) → ( 𝑥𝐴 ↔ ( 𝐴 × { ∅ } ) ≈ 𝐴 ) )
14 breq1 ( 𝑦 = ( 𝐵 × { 1o } ) → ( 𝑦𝐵 ↔ ( 𝐵 × { 1o } ) ≈ 𝐵 ) )
15 13 14 bi2anan9 ( ( 𝑥 = ( 𝐴 × { ∅ } ) ∧ 𝑦 = ( 𝐵 × { 1o } ) ) → ( ( 𝑥𝐴𝑦𝐵 ) ↔ ( ( 𝐴 × { ∅ } ) ≈ 𝐴 ∧ ( 𝐵 × { 1o } ) ≈ 𝐵 ) ) )
16 ineq12 ( ( 𝑥 = ( 𝐴 × { ∅ } ) ∧ 𝑦 = ( 𝐵 × { 1o } ) ) → ( 𝑥𝑦 ) = ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) )
17 16 eqeq1d ( ( 𝑥 = ( 𝐴 × { ∅ } ) ∧ 𝑦 = ( 𝐵 × { 1o } ) ) → ( ( 𝑥𝑦 ) = ∅ ↔ ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) = ∅ ) )
18 15 17 anbi12d ( ( 𝑥 = ( 𝐴 × { ∅ } ) ∧ 𝑦 = ( 𝐵 × { 1o } ) ) → ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑥𝑦 ) = ∅ ) ↔ ( ( ( 𝐴 × { ∅ } ) ≈ 𝐴 ∧ ( 𝐵 × { 1o } ) ≈ 𝐵 ) ∧ ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) = ∅ ) ) )
19 10 12 18 spc2ev ( ( ( ( 𝐴 × { ∅ } ) ≈ 𝐴 ∧ ( 𝐵 × { 1o } ) ≈ 𝐵 ) ∧ ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) = ∅ ) → ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑥𝑦 ) = ∅ ) )
20 7 8 19 mp2an 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑥𝑦 ) = ∅ )