| Step |
Hyp |
Ref |
Expression |
| 1 |
|
endisj.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
endisj.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
0ex |
⊢ ∅ ∈ V |
| 4 |
1 3
|
xpsnen |
⊢ ( 𝐴 × { ∅ } ) ≈ 𝐴 |
| 5 |
|
1oex |
⊢ 1o ∈ V |
| 6 |
2 5
|
xpsnen |
⊢ ( 𝐵 × { 1o } ) ≈ 𝐵 |
| 7 |
4 6
|
pm3.2i |
⊢ ( ( 𝐴 × { ∅ } ) ≈ 𝐴 ∧ ( 𝐵 × { 1o } ) ≈ 𝐵 ) |
| 8 |
|
xp01disj |
⊢ ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) = ∅ |
| 9 |
|
p0ex |
⊢ { ∅ } ∈ V |
| 10 |
1 9
|
xpex |
⊢ ( 𝐴 × { ∅ } ) ∈ V |
| 11 |
|
snex |
⊢ { 1o } ∈ V |
| 12 |
2 11
|
xpex |
⊢ ( 𝐵 × { 1o } ) ∈ V |
| 13 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐴 × { ∅ } ) → ( 𝑥 ≈ 𝐴 ↔ ( 𝐴 × { ∅ } ) ≈ 𝐴 ) ) |
| 14 |
|
breq1 |
⊢ ( 𝑦 = ( 𝐵 × { 1o } ) → ( 𝑦 ≈ 𝐵 ↔ ( 𝐵 × { 1o } ) ≈ 𝐵 ) ) |
| 15 |
13 14
|
bi2anan9 |
⊢ ( ( 𝑥 = ( 𝐴 × { ∅ } ) ∧ 𝑦 = ( 𝐵 × { 1o } ) ) → ( ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ↔ ( ( 𝐴 × { ∅ } ) ≈ 𝐴 ∧ ( 𝐵 × { 1o } ) ≈ 𝐵 ) ) ) |
| 16 |
|
ineq12 |
⊢ ( ( 𝑥 = ( 𝐴 × { ∅ } ) ∧ 𝑦 = ( 𝐵 × { 1o } ) ) → ( 𝑥 ∩ 𝑦 ) = ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) ) |
| 17 |
16
|
eqeq1d |
⊢ ( ( 𝑥 = ( 𝐴 × { ∅ } ) ∧ 𝑦 = ( 𝐵 × { 1o } ) ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ ↔ ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) = ∅ ) ) |
| 18 |
15 17
|
anbi12d |
⊢ ( ( 𝑥 = ( 𝐴 × { ∅ } ) ∧ 𝑦 = ( 𝐵 × { 1o } ) ) → ( ( ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ( ( ( 𝐴 × { ∅ } ) ≈ 𝐴 ∧ ( 𝐵 × { 1o } ) ≈ 𝐵 ) ∧ ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) = ∅ ) ) ) |
| 19 |
10 12 18
|
spc2ev |
⊢ ( ( ( ( 𝐴 × { ∅ } ) ≈ 𝐴 ∧ ( 𝐵 × { 1o } ) ≈ 𝐵 ) ∧ ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) = ∅ ) → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 20 |
7 8 19
|
mp2an |
⊢ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) |