Step |
Hyp |
Ref |
Expression |
1 |
|
df-dju |
⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) |
2 |
|
0ex |
⊢ ∅ ∈ V |
3 |
|
xpsnen2g |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ 𝑉 → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
5 |
|
1on |
⊢ 1o ∈ On |
6 |
|
xpsnen2g |
⊢ ( ( 1o ∈ On ∧ 𝐵 ∈ 𝑊 ) → ( { 1o } × 𝐵 ) ≈ 𝐵 ) |
7 |
5 6
|
mpan |
⊢ ( 𝐵 ∈ 𝑊 → ( { 1o } × 𝐵 ) ≈ 𝐵 ) |
8 |
4 7
|
anim12i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( { ∅ } × 𝐴 ) ≈ 𝐴 ∧ ( { 1o } × 𝐵 ) ≈ 𝐵 ) ) |
9 |
|
xp01disjl |
⊢ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅ |
10 |
9
|
jctl |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅ ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
11 |
|
unen |
⊢ ( ( ( ( { ∅ } × 𝐴 ) ≈ 𝐴 ∧ ( { 1o } × 𝐵 ) ≈ 𝐵 ) ∧ ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅ ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
12 |
8 10 11
|
syl2an |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
13 |
12
|
3impa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
14 |
1 13
|
eqbrtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |