Metamath Proof Explorer


Theorem endjudisj

Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by NM, 5-Apr-2007)

Ref Expression
Assertion endjudisj ( ( 𝐴𝑉𝐵𝑊 ∧ ( 𝐴𝐵 ) = ∅ ) → ( 𝐴𝐵 ) ≈ ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-dju ( 𝐴𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) )
2 0ex ∅ ∈ V
3 xpsnen2g ( ( ∅ ∈ V ∧ 𝐴𝑉 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 )
4 2 3 mpan ( 𝐴𝑉 → ( { ∅ } × 𝐴 ) ≈ 𝐴 )
5 1on 1o ∈ On
6 xpsnen2g ( ( 1o ∈ On ∧ 𝐵𝑊 ) → ( { 1o } × 𝐵 ) ≈ 𝐵 )
7 5 6 mpan ( 𝐵𝑊 → ( { 1o } × 𝐵 ) ≈ 𝐵 )
8 4 7 anim12i ( ( 𝐴𝑉𝐵𝑊 ) → ( ( { ∅ } × 𝐴 ) ≈ 𝐴 ∧ ( { 1o } × 𝐵 ) ≈ 𝐵 ) )
9 xp01disjl ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅
10 9 jctl ( ( 𝐴𝐵 ) = ∅ → ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅ ∧ ( 𝐴𝐵 ) = ∅ ) )
11 unen ( ( ( ( { ∅ } × 𝐴 ) ≈ 𝐴 ∧ ( { 1o } × 𝐵 ) ≈ 𝐵 ) ∧ ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅ ∧ ( 𝐴𝐵 ) = ∅ ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≈ ( 𝐴𝐵 ) )
12 8 10 11 syl2an ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≈ ( 𝐴𝐵 ) )
13 12 3impa ( ( 𝐴𝑉𝐵𝑊 ∧ ( 𝐴𝐵 ) = ∅ ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≈ ( 𝐴𝐵 ) )
14 1 13 eqbrtrid ( ( 𝐴𝑉𝐵𝑊 ∧ ( 𝐴𝐵 ) = ∅ ) → ( 𝐴𝐵 ) ≈ ( 𝐴𝐵 ) )