| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-dju | ⊢ ( 𝐴  ⊔  𝐵 )  =  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) ) | 
						
							| 2 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 3 |  | xpsnen2g | ⊢ ( ( ∅  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( { ∅ }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 4 | 2 3 | mpan | ⊢ ( 𝐴  ∈  𝑉  →  ( { ∅ }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 5 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 6 |  | xpsnen2g | ⊢ ( ( 1o  ∈  On  ∧  𝐵  ∈  𝑊 )  →  ( { 1o }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 7 | 5 6 | mpan | ⊢ ( 𝐵  ∈  𝑊  →  ( { 1o }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 8 | 4 7 | anim12i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ( { ∅ }  ×  𝐴 )  ≈  𝐴  ∧  ( { 1o }  ×  𝐵 )  ≈  𝐵 ) ) | 
						
							| 9 |  | xp01disjl | ⊢ ( ( { ∅ }  ×  𝐴 )  ∩  ( { 1o }  ×  𝐵 ) )  =  ∅ | 
						
							| 10 | 9 | jctl | ⊢ ( ( 𝐴  ∩  𝐵 )  =  ∅  →  ( ( ( { ∅ }  ×  𝐴 )  ∩  ( { 1o }  ×  𝐵 ) )  =  ∅  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 11 |  | unen | ⊢ ( ( ( ( { ∅ }  ×  𝐴 )  ≈  𝐴  ∧  ( { 1o }  ×  𝐵 )  ≈  𝐵 )  ∧  ( ( ( { ∅ }  ×  𝐴 )  ∩  ( { 1o }  ×  𝐵 ) )  =  ∅  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ ) )  →  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) )  ≈  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 12 | 8 10 11 | syl2an | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) )  ≈  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 13 | 12 | 3impa | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) )  ≈  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 14 | 1 13 | eqbrtrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( 𝐴  ⊔  𝐵 )  ≈  ( 𝐴  ∪  𝐵 ) ) |