Step |
Hyp |
Ref |
Expression |
1 |
|
endmndlem.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
endmndlem.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
endmndlem.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
endmndlem.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
|
endmndlem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
endmndlem.m |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( Base ‘ 𝑀 ) ) |
7 |
|
endmndlem.p |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) = ( +g ‘ 𝑀 ) ) |
8 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝐶 ∈ Cat ) |
9 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
10 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) |
11 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) |
12 |
1 2 3 8 9 9 9 10 11
|
catcocl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) → ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) ) → 𝐶 ∈ Cat ) |
14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
15 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) ) → 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) |
16 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) ) → 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) |
17 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) |
18 |
1 2 3 13 14 14 14 15 16 14 17
|
catass |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) ) → ( ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑘 ) = ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑘 ) ) ) |
19 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
20 |
1 2 19 4 5
|
catidcl |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝐶 ∈ Cat ) |
22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) |
24 |
1 2 19 21 22 3 22 23
|
catlid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) |
25 |
1 2 19 21 22 3 22 23
|
catrid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) → ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝑓 ) |
26 |
6 7 12 18 20 24 25
|
ismndd |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |