| Step | Hyp | Ref | Expression | 
						
							| 1 |  | endmndlem.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | endmndlem.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | endmndlem.o | ⊢  ·   =  ( comp ‘ 𝐶 ) | 
						
							| 4 |  | endmndlem.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 5 |  | endmndlem.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | endmndlem.m | ⊢ ( 𝜑  →  ( 𝑋 𝐻 𝑋 )  =  ( Base ‘ 𝑀 ) ) | 
						
							| 7 |  | endmndlem.p | ⊢ ( 𝜑  →  ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 )  =  ( +g ‘ 𝑀 ) ) | 
						
							| 8 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑋 ) )  →  𝐶  ∈  Cat ) | 
						
							| 9 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑋 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 10 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑋 ) )  →  𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ) | 
						
							| 11 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑋 ) )  →  𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ) | 
						
							| 12 | 1 2 3 8 9 9 9 10 11 | catcocl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑋 ) )  →  ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  ∈  ( 𝑋 𝐻 𝑋 ) ) | 
						
							| 13 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑘  ∈  ( 𝑋 𝐻 𝑋 ) ) )  →  𝐶  ∈  Cat ) | 
						
							| 14 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑘  ∈  ( 𝑋 𝐻 𝑋 ) ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 15 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑘  ∈  ( 𝑋 𝐻 𝑋 ) ) )  →  𝑘  ∈  ( 𝑋 𝐻 𝑋 ) ) | 
						
							| 16 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑘  ∈  ( 𝑋 𝐻 𝑋 ) ) )  →  𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ) | 
						
							| 17 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑘  ∈  ( 𝑋 𝐻 𝑋 ) ) )  →  𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ) | 
						
							| 18 | 1 2 3 13 14 14 14 15 16 14 17 | catass | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑋 )  ∧  𝑘  ∈  ( 𝑋 𝐻 𝑋 ) ) )  →  ( ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 ) ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑘 )  =  ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑘 ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( Id ‘ 𝐶 )  =  ( Id ‘ 𝐶 ) | 
						
							| 20 | 1 2 19 4 5 | catidcl | ⊢ ( 𝜑  →  ( ( Id ‘ 𝐶 ) ‘ 𝑋 )  ∈  ( 𝑋 𝐻 𝑋 ) ) | 
						
							| 21 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑋 ) )  →  𝐶  ∈  Cat ) | 
						
							| 22 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑋 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑋 ) )  →  𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ) | 
						
							| 24 | 1 2 19 21 22 3 22 23 | catlid | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑋 ) )  →  ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓 ) | 
						
							| 25 | 1 2 19 21 22 3 22 23 | catrid | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑋 𝐻 𝑋 ) )  →  ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )  =  𝑓 ) | 
						
							| 26 | 6 7 12 18 20 24 25 | ismndd | ⊢ ( 𝜑  →  𝑀  ∈  Mnd ) |