Metamath Proof Explorer


Theorem endomtr

Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998)

Ref Expression
Assertion endomtr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 endom ( 𝐴𝐵𝐴𝐵 )
2 domtr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
3 1 2 sylan ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )