Metamath Proof Explorer


Theorem ene1

Description: _e is not 1. (Contributed by David A. Wheeler, 17-Oct-2017)

Ref Expression
Assertion ene1 e ≠ 1

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 1lt2 1 < 2
3 egt2lt3 ( 2 < e ∧ e < 3 )
4 3 simpli 2 < e
5 2re 2 ∈ ℝ
6 ere e ∈ ℝ
7 1 5 6 lttri ( ( 1 < 2 ∧ 2 < e ) → 1 < e )
8 2 4 7 mp2an 1 < e
9 1 8 gtneii e ≠ 1