Metamath Proof Explorer


Theorem enen1

Description: Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003)

Ref Expression
Assertion enen1 ( 𝐴𝐵 → ( 𝐴𝐶𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 ensym ( 𝐴𝐵𝐵𝐴 )
2 entr ( ( 𝐵𝐴𝐴𝐶 ) → 𝐵𝐶 )
3 1 2 sylan ( ( 𝐴𝐵𝐴𝐶 ) → 𝐵𝐶 )
4 entr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
5 3 4 impbida ( 𝐴𝐵 → ( 𝐴𝐶𝐵𝐶 ) )