| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relen |
⊢ Rel ≈ |
| 2 |
|
bren |
⊢ ( 𝑥 ≈ 𝑦 ↔ ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑦 ) |
| 3 |
|
vex |
⊢ 𝑦 ∈ V |
| 4 |
|
vex |
⊢ 𝑥 ∈ V |
| 5 |
|
f1ocnv |
⊢ ( 𝑓 : 𝑥 –1-1-onto→ 𝑦 → ◡ 𝑓 : 𝑦 –1-1-onto→ 𝑥 ) |
| 6 |
|
f1oen2g |
⊢ ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ∧ ◡ 𝑓 : 𝑦 –1-1-onto→ 𝑥 ) → 𝑦 ≈ 𝑥 ) |
| 7 |
3 4 5 6
|
mp3an12i |
⊢ ( 𝑓 : 𝑥 –1-1-onto→ 𝑦 → 𝑦 ≈ 𝑥 ) |
| 8 |
7
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑦 → 𝑦 ≈ 𝑥 ) |
| 9 |
2 8
|
sylbi |
⊢ ( 𝑥 ≈ 𝑦 → 𝑦 ≈ 𝑥 ) |
| 10 |
|
bren |
⊢ ( 𝑥 ≈ 𝑦 ↔ ∃ 𝑔 𝑔 : 𝑥 –1-1-onto→ 𝑦 ) |
| 11 |
|
bren |
⊢ ( 𝑦 ≈ 𝑧 ↔ ∃ 𝑓 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) |
| 12 |
|
exdistrv |
⊢ ( ∃ 𝑔 ∃ 𝑓 ( 𝑔 : 𝑥 –1-1-onto→ 𝑦 ∧ 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) ↔ ( ∃ 𝑔 𝑔 : 𝑥 –1-1-onto→ 𝑦 ∧ ∃ 𝑓 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) ) |
| 13 |
|
vex |
⊢ 𝑧 ∈ V |
| 14 |
|
f1oco |
⊢ ( ( 𝑓 : 𝑦 –1-1-onto→ 𝑧 ∧ 𝑔 : 𝑥 –1-1-onto→ 𝑦 ) → ( 𝑓 ∘ 𝑔 ) : 𝑥 –1-1-onto→ 𝑧 ) |
| 15 |
14
|
ancoms |
⊢ ( ( 𝑔 : 𝑥 –1-1-onto→ 𝑦 ∧ 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) → ( 𝑓 ∘ 𝑔 ) : 𝑥 –1-1-onto→ 𝑧 ) |
| 16 |
|
f1oen2g |
⊢ ( ( 𝑥 ∈ V ∧ 𝑧 ∈ V ∧ ( 𝑓 ∘ 𝑔 ) : 𝑥 –1-1-onto→ 𝑧 ) → 𝑥 ≈ 𝑧 ) |
| 17 |
4 13 15 16
|
mp3an12i |
⊢ ( ( 𝑔 : 𝑥 –1-1-onto→ 𝑦 ∧ 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) → 𝑥 ≈ 𝑧 ) |
| 18 |
17
|
exlimivv |
⊢ ( ∃ 𝑔 ∃ 𝑓 ( 𝑔 : 𝑥 –1-1-onto→ 𝑦 ∧ 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) → 𝑥 ≈ 𝑧 ) |
| 19 |
12 18
|
sylbir |
⊢ ( ( ∃ 𝑔 𝑔 : 𝑥 –1-1-onto→ 𝑦 ∧ ∃ 𝑓 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) → 𝑥 ≈ 𝑧 ) |
| 20 |
10 11 19
|
syl2anb |
⊢ ( ( 𝑥 ≈ 𝑦 ∧ 𝑦 ≈ 𝑧 ) → 𝑥 ≈ 𝑧 ) |
| 21 |
4
|
enref |
⊢ 𝑥 ≈ 𝑥 |
| 22 |
4 21
|
2th |
⊢ ( 𝑥 ∈ V ↔ 𝑥 ≈ 𝑥 ) |
| 23 |
1 9 20 22
|
iseri |
⊢ ≈ Er V |