Step |
Hyp |
Ref |
Expression |
1 |
|
ensym |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) |
2 |
|
bren |
⊢ ( 𝐵 ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) |
3 |
1 2
|
sylib |
⊢ ( 𝐴 ≈ 𝐵 → ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) |
4 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝐵 → 𝑥 ⊆ 𝐵 ) |
5 |
|
simplr |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → 𝐴 ∈ FinIa ) |
6 |
|
imassrn |
⊢ ( 𝑓 “ 𝑥 ) ⊆ ran 𝑓 |
7 |
|
f1of |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → 𝑓 : 𝐵 ⟶ 𝐴 ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → 𝑓 : 𝐵 ⟶ 𝐴 ) |
9 |
8
|
frnd |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ran 𝑓 ⊆ 𝐴 ) |
10 |
6 9
|
sstrid |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ 𝑥 ) ⊆ 𝐴 ) |
11 |
|
fin1ai |
⊢ ( ( 𝐴 ∈ FinIa ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝐴 ) → ( ( 𝑓 “ 𝑥 ) ∈ Fin ∨ ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ∈ Fin ) ) |
12 |
5 10 11
|
syl2anc |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( ( 𝑓 “ 𝑥 ) ∈ Fin ∨ ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ∈ Fin ) ) |
13 |
|
f1of1 |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → 𝑓 : 𝐵 –1-1→ 𝐴 ) |
14 |
13
|
ad2antrr |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → 𝑓 : 𝐵 –1-1→ 𝐴 ) |
15 |
|
simpr |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 ⊆ 𝐵 ) |
16 |
|
vex |
⊢ 𝑥 ∈ V |
17 |
16
|
a1i |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 ∈ V ) |
18 |
|
f1imaeng |
⊢ ( ( 𝑓 : 𝐵 –1-1→ 𝐴 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑥 ∈ V ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
19 |
14 15 17 18
|
syl3anc |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
20 |
|
enfi |
⊢ ( ( 𝑓 “ 𝑥 ) ≈ 𝑥 → ( ( 𝑓 “ 𝑥 ) ∈ Fin ↔ 𝑥 ∈ Fin ) ) |
21 |
19 20
|
syl |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( ( 𝑓 “ 𝑥 ) ∈ Fin ↔ 𝑥 ∈ Fin ) ) |
22 |
|
df-f1 |
⊢ ( 𝑓 : 𝐵 –1-1→ 𝐴 ↔ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Fun ◡ 𝑓 ) ) |
23 |
22
|
simprbi |
⊢ ( 𝑓 : 𝐵 –1-1→ 𝐴 → Fun ◡ 𝑓 ) |
24 |
|
imadif |
⊢ ( Fun ◡ 𝑓 → ( 𝑓 “ ( 𝐵 ∖ 𝑥 ) ) = ( ( 𝑓 “ 𝐵 ) ∖ ( 𝑓 “ 𝑥 ) ) ) |
25 |
14 23 24
|
3syl |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ ( 𝐵 ∖ 𝑥 ) ) = ( ( 𝑓 “ 𝐵 ) ∖ ( 𝑓 “ 𝑥 ) ) ) |
26 |
|
f1ofo |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → 𝑓 : 𝐵 –onto→ 𝐴 ) |
27 |
|
foima |
⊢ ( 𝑓 : 𝐵 –onto→ 𝐴 → ( 𝑓 “ 𝐵 ) = 𝐴 ) |
28 |
26 27
|
syl |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝑓 “ 𝐵 ) = 𝐴 ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ 𝐵 ) = 𝐴 ) |
30 |
29
|
difeq1d |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( ( 𝑓 “ 𝐵 ) ∖ ( 𝑓 “ 𝑥 ) ) = ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ) |
31 |
25 30
|
eqtrd |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ ( 𝐵 ∖ 𝑥 ) ) = ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ) |
32 |
|
difssd |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑥 ) ⊆ 𝐵 ) |
33 |
|
vex |
⊢ 𝑓 ∈ V |
34 |
7
|
adantr |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) → 𝑓 : 𝐵 ⟶ 𝐴 ) |
35 |
|
dmfex |
⊢ ( ( 𝑓 ∈ V ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝐵 ∈ V ) |
36 |
33 34 35
|
sylancr |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) → 𝐵 ∈ V ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → 𝐵 ∈ V ) |
38 |
37
|
difexd |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑥 ) ∈ V ) |
39 |
|
f1imaeng |
⊢ ( ( 𝑓 : 𝐵 –1-1→ 𝐴 ∧ ( 𝐵 ∖ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐵 ∖ 𝑥 ) ∈ V ) → ( 𝑓 “ ( 𝐵 ∖ 𝑥 ) ) ≈ ( 𝐵 ∖ 𝑥 ) ) |
40 |
14 32 38 39
|
syl3anc |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ ( 𝐵 ∖ 𝑥 ) ) ≈ ( 𝐵 ∖ 𝑥 ) ) |
41 |
31 40
|
eqbrtrrd |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ≈ ( 𝐵 ∖ 𝑥 ) ) |
42 |
|
enfi |
⊢ ( ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ≈ ( 𝐵 ∖ 𝑥 ) → ( ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ∈ Fin ↔ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) |
43 |
41 42
|
syl |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ∈ Fin ↔ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) |
44 |
21 43
|
orbi12d |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( ( ( 𝑓 “ 𝑥 ) ∈ Fin ∨ ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ∈ Fin ) ↔ ( 𝑥 ∈ Fin ∨ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) ) |
45 |
12 44
|
mpbid |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑥 ∈ Fin ∨ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) |
46 |
4 45
|
sylan2 |
⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ Fin ∨ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) |
47 |
46
|
ralrimiva |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) → ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑥 ∈ Fin ∨ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) |
48 |
|
isfin1a |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ FinIa ↔ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑥 ∈ Fin ∨ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) ) |
49 |
36 48
|
syl |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) → ( 𝐵 ∈ FinIa ↔ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑥 ∈ Fin ∨ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) ) |
50 |
47 49
|
mpbird |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) → 𝐵 ∈ FinIa ) |
51 |
50
|
ex |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝐴 ∈ FinIa → 𝐵 ∈ FinIa ) ) |
52 |
51
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝐴 ∈ FinIa → 𝐵 ∈ FinIa ) ) |
53 |
3 52
|
syl |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ FinIa → 𝐵 ∈ FinIa ) ) |