Step |
Hyp |
Ref |
Expression |
1 |
|
bren |
⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
2 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝒫 𝐵 → 𝑥 ⊆ 𝒫 𝐵 ) |
3 |
|
imauni |
⊢ ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) = ∪ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ( 𝑓 “ 𝑧 ) |
4 |
|
vex |
⊢ 𝑓 ∈ V |
5 |
4
|
imaex |
⊢ ( 𝑓 “ 𝑧 ) ∈ V |
6 |
5
|
dfiun2 |
⊢ ∪ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ( 𝑓 “ 𝑧 ) = ∪ { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } 𝑤 = ( 𝑓 “ 𝑧 ) } |
7 |
3 6
|
eqtri |
⊢ ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) = ∪ { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } 𝑤 = ( 𝑓 “ 𝑧 ) } |
8 |
|
imaeq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑓 “ 𝑦 ) = ( 𝑓 “ 𝑧 ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑓 “ 𝑦 ) ∈ 𝑥 ↔ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ) |
10 |
9
|
rexrab |
⊢ ( ∃ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } 𝑤 = ( 𝑓 “ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝒫 𝐴 ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) ) |
11 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑓 “ 𝑧 ) → ( 𝑤 ∈ 𝑥 ↔ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ) |
12 |
11
|
biimparc |
⊢ ( ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) → 𝑤 ∈ 𝑥 ) |
13 |
12
|
rexlimivw |
⊢ ( ∃ 𝑧 ∈ 𝒫 𝐴 ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) → 𝑤 ∈ 𝑥 ) |
14 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ 𝑤 ) ⊆ dom 𝑓 |
15 |
|
f1odm |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → dom 𝑓 = 𝐴 ) |
16 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → dom 𝑓 = 𝐴 ) |
17 |
14 16
|
sseqtrid |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → ( ◡ 𝑓 “ 𝑤 ) ⊆ 𝐴 ) |
18 |
4
|
cnvex |
⊢ ◡ 𝑓 ∈ V |
19 |
18
|
imaex |
⊢ ( ◡ 𝑓 “ 𝑤 ) ∈ V |
20 |
19
|
elpw |
⊢ ( ( ◡ 𝑓 “ 𝑤 ) ∈ 𝒫 𝐴 ↔ ( ◡ 𝑓 “ 𝑤 ) ⊆ 𝐴 ) |
21 |
17 20
|
sylibr |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → ( ◡ 𝑓 “ 𝑤 ) ∈ 𝒫 𝐴 ) |
22 |
|
f1ofo |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) |
23 |
22
|
ad3antrrr |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → 𝑓 : 𝐴 –onto→ 𝐵 ) |
24 |
|
simprl |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → 𝑥 ⊆ 𝒫 𝐵 ) |
25 |
24
|
sselda |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → 𝑤 ∈ 𝒫 𝐵 ) |
26 |
25
|
elpwid |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → 𝑤 ⊆ 𝐵 ) |
27 |
|
foimacnv |
⊢ ( ( 𝑓 : 𝐴 –onto→ 𝐵 ∧ 𝑤 ⊆ 𝐵 ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) = 𝑤 ) |
28 |
23 26 27
|
syl2anc |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) = 𝑤 ) |
29 |
28
|
eqcomd |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → 𝑤 = ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ) |
30 |
|
simpr |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → 𝑤 ∈ 𝑥 ) |
31 |
29 30
|
eqeltrrd |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ∈ 𝑥 ) |
32 |
|
imaeq2 |
⊢ ( 𝑧 = ( ◡ 𝑓 “ 𝑤 ) → ( 𝑓 “ 𝑧 ) = ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ) |
33 |
32
|
eleq1d |
⊢ ( 𝑧 = ( ◡ 𝑓 “ 𝑤 ) → ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ↔ ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ∈ 𝑥 ) ) |
34 |
32
|
eqeq2d |
⊢ ( 𝑧 = ( ◡ 𝑓 “ 𝑤 ) → ( 𝑤 = ( 𝑓 “ 𝑧 ) ↔ 𝑤 = ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ) ) |
35 |
33 34
|
anbi12d |
⊢ ( 𝑧 = ( ◡ 𝑓 “ 𝑤 ) → ( ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) ↔ ( ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ) ) ) |
36 |
35
|
rspcev |
⊢ ( ( ( ◡ 𝑓 “ 𝑤 ) ∈ 𝒫 𝐴 ∧ ( ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ) ) → ∃ 𝑧 ∈ 𝒫 𝐴 ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) ) |
37 |
21 31 29 36
|
syl12anc |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑧 ∈ 𝒫 𝐴 ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) ) |
38 |
37
|
ex |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ∈ 𝒫 𝐴 ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) ) ) |
39 |
13 38
|
impbid2 |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ( ∃ 𝑧 ∈ 𝒫 𝐴 ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ 𝑤 = ( 𝑓 “ 𝑧 ) ) ↔ 𝑤 ∈ 𝑥 ) ) |
40 |
10 39
|
syl5bb |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ( ∃ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } 𝑤 = ( 𝑓 “ 𝑧 ) ↔ 𝑤 ∈ 𝑥 ) ) |
41 |
40
|
abbi1dv |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } 𝑤 = ( 𝑓 “ 𝑧 ) } = 𝑥 ) |
42 |
41
|
unieqd |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ∪ { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } 𝑤 = ( 𝑓 “ 𝑧 ) } = ∪ 𝑥 ) |
43 |
7 42
|
eqtrid |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) = ∪ 𝑥 ) |
44 |
|
simplr |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → 𝐴 ∈ FinII ) |
45 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ⊆ 𝒫 𝐴 |
46 |
45
|
a1i |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ⊆ 𝒫 𝐴 ) |
47 |
|
simprrl |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → 𝑥 ≠ ∅ ) |
48 |
|
n0 |
⊢ ( 𝑥 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝑥 ) |
49 |
47 48
|
sylib |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ∃ 𝑤 𝑤 ∈ 𝑥 ) |
50 |
|
imaeq2 |
⊢ ( 𝑦 = ( ◡ 𝑓 “ 𝑤 ) → ( 𝑓 “ 𝑦 ) = ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ) |
51 |
50
|
eleq1d |
⊢ ( 𝑦 = ( ◡ 𝑓 “ 𝑤 ) → ( ( 𝑓 “ 𝑦 ) ∈ 𝑥 ↔ ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ∈ 𝑥 ) ) |
52 |
51
|
rspcev |
⊢ ( ( ( ◡ 𝑓 “ 𝑤 ) ∈ 𝒫 𝐴 ∧ ( 𝑓 “ ( ◡ 𝑓 “ 𝑤 ) ) ∈ 𝑥 ) → ∃ 𝑦 ∈ 𝒫 𝐴 ( 𝑓 “ 𝑦 ) ∈ 𝑥 ) |
53 |
21 31 52
|
syl2anc |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑦 ∈ 𝒫 𝐴 ( 𝑓 “ 𝑦 ) ∈ 𝑥 ) |
54 |
49 53
|
exlimddv |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ∃ 𝑦 ∈ 𝒫 𝐴 ( 𝑓 “ 𝑦 ) ∈ 𝑥 ) |
55 |
|
rabn0 |
⊢ ( { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ≠ ∅ ↔ ∃ 𝑦 ∈ 𝒫 𝐴 ( 𝑓 “ 𝑦 ) ∈ 𝑥 ) |
56 |
54 55
|
sylibr |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ≠ ∅ ) |
57 |
9
|
elrab |
⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ) |
58 |
|
imaeq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑓 “ 𝑦 ) = ( 𝑓 “ 𝑤 ) ) |
59 |
58
|
eleq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑓 “ 𝑦 ) ∈ 𝑥 ↔ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) |
60 |
59
|
elrab |
⊢ ( 𝑤 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ↔ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) |
61 |
57 60
|
anbi12i |
⊢ ( ( 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∧ 𝑤 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ↔ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) |
62 |
|
simprrr |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → [⊊] Or 𝑥 ) |
63 |
62
|
adantr |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → [⊊] Or 𝑥 ) |
64 |
|
simprlr |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) |
65 |
|
simprrr |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) |
66 |
|
sorpssi |
⊢ ( ( [⊊] Or 𝑥 ∧ ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) → ( ( 𝑓 “ 𝑧 ) ⊆ ( 𝑓 “ 𝑤 ) ∨ ( 𝑓 “ 𝑤 ) ⊆ ( 𝑓 “ 𝑧 ) ) ) |
67 |
63 64 65 66
|
syl12anc |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( ( 𝑓 “ 𝑧 ) ⊆ ( 𝑓 “ 𝑤 ) ∨ ( 𝑓 “ 𝑤 ) ⊆ ( 𝑓 “ 𝑧 ) ) ) |
68 |
|
f1of1 |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
69 |
68
|
ad3antrrr |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
70 |
|
simprll |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → 𝑧 ∈ 𝒫 𝐴 ) |
71 |
70
|
elpwid |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → 𝑧 ⊆ 𝐴 ) |
72 |
|
simprrl |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → 𝑤 ∈ 𝒫 𝐴 ) |
73 |
72
|
elpwid |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → 𝑤 ⊆ 𝐴 ) |
74 |
|
f1imass |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑧 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝐴 ) ) → ( ( 𝑓 “ 𝑧 ) ⊆ ( 𝑓 “ 𝑤 ) ↔ 𝑧 ⊆ 𝑤 ) ) |
75 |
69 71 73 74
|
syl12anc |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( ( 𝑓 “ 𝑧 ) ⊆ ( 𝑓 “ 𝑤 ) ↔ 𝑧 ⊆ 𝑤 ) ) |
76 |
|
f1imass |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑤 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴 ) ) → ( ( 𝑓 “ 𝑤 ) ⊆ ( 𝑓 “ 𝑧 ) ↔ 𝑤 ⊆ 𝑧 ) ) |
77 |
69 73 71 76
|
syl12anc |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( ( 𝑓 “ 𝑤 ) ⊆ ( 𝑓 “ 𝑧 ) ↔ 𝑤 ⊆ 𝑧 ) ) |
78 |
75 77
|
orbi12d |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( ( ( 𝑓 “ 𝑧 ) ⊆ ( 𝑓 “ 𝑤 ) ∨ ( 𝑓 “ 𝑤 ) ⊆ ( 𝑓 “ 𝑧 ) ) ↔ ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) ) |
79 |
67 78
|
mpbid |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝒫 𝐴 ∧ ( 𝑓 “ 𝑤 ) ∈ 𝑥 ) ) ) → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) |
80 |
61 79
|
sylan2b |
⊢ ( ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) ∧ ( 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∧ 𝑤 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ) → ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) |
81 |
80
|
ralrimivva |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ∀ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∀ 𝑤 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) |
82 |
|
sorpss |
⊢ ( [⊊] Or { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ↔ ∀ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∀ 𝑤 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ( 𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧 ) ) |
83 |
81 82
|
sylibr |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → [⊊] Or { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) |
84 |
|
fin2i |
⊢ ( ( ( 𝐴 ∈ FinII ∧ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ⊆ 𝒫 𝐴 ) ∧ ( { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ≠ ∅ ∧ [⊊] Or { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ) → ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) |
85 |
44 46 56 83 84
|
syl22anc |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) |
86 |
|
imaeq2 |
⊢ ( 𝑧 = ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } → ( 𝑓 “ 𝑧 ) = ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ) |
87 |
86
|
eleq1d |
⊢ ( 𝑧 = ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } → ( ( 𝑓 “ 𝑧 ) ∈ 𝑥 ↔ ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ∈ 𝑥 ) ) |
88 |
9
|
cbvrabv |
⊢ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } = { 𝑧 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑧 ) ∈ 𝑥 } |
89 |
87 88
|
elrab2 |
⊢ ( ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ↔ ( ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∈ 𝒫 𝐴 ∧ ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ∈ 𝑥 ) ) |
90 |
89
|
simprbi |
⊢ ( ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } → ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ∈ 𝑥 ) |
91 |
85 90
|
syl |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ( 𝑓 “ ∪ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑓 “ 𝑦 ) ∈ 𝑥 } ) ∈ 𝑥 ) |
92 |
43 91
|
eqeltrrd |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ ( 𝑥 ⊆ 𝒫 𝐵 ∧ ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) ) ) → ∪ 𝑥 ∈ 𝑥 ) |
93 |
92
|
expr |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ 𝑥 ⊆ 𝒫 𝐵 ) → ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) |
94 |
2 93
|
sylan2 |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) ∧ 𝑥 ∈ 𝒫 𝒫 𝐵 ) → ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) |
95 |
94
|
ralrimiva |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐴 ∈ FinII ) → ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) |
96 |
95
|
ex |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐴 ∈ FinII → ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) |
97 |
96
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐴 ∈ FinII → ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) |
98 |
1 97
|
sylbi |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ FinII → ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) |
99 |
|
relen |
⊢ Rel ≈ |
100 |
99
|
brrelex2i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
101 |
|
isfin2 |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ FinII ↔ ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) |
102 |
100 101
|
syl |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝐵 ∈ FinII ↔ ∀ 𝑥 ∈ 𝒫 𝒫 𝐵 ( ( 𝑥 ≠ ∅ ∧ [⊊] Or 𝑥 ) → ∪ 𝑥 ∈ 𝑥 ) ) ) |
103 |
98 102
|
sylibrd |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ FinII → 𝐵 ∈ FinII ) ) |