| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  →  𝑋  ≈  𝑌 ) | 
						
							| 2 |  | bren | ⊢ ( 𝑋  ≈  𝑌  ↔  ∃ 𝑔 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  →  ∃ 𝑔 𝑔 : 𝑋 –1-1-onto→ 𝑌 ) | 
						
							| 4 |  | relen | ⊢ Rel   ≈ | 
						
							| 5 | 4 | brrelex2i | ⊢ ( 𝑋  ≈  𝑌  →  𝑌  ∈  V ) | 
						
							| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  →  𝑌  ∈  V ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  𝑔 : 𝑋 –1-1-onto→ 𝑌 )  →  𝑌  ∈  V ) | 
						
							| 8 |  | f1of | ⊢ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  →  𝑔 : 𝑋 ⟶ 𝑌 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  𝑔 : 𝑋 –1-1-onto→ 𝑌 )  →  𝑔 : 𝑋 ⟶ 𝑌 ) | 
						
							| 10 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  𝑔 : 𝑋 –1-1-onto→ 𝑌 )  →  𝐴  ∈  𝑋 ) | 
						
							| 11 | 9 10 | ffvelcdmd | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  𝑔 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝑔 ‘ 𝐴 )  ∈  𝑌 ) | 
						
							| 12 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  𝑔 : 𝑋 –1-1-onto→ 𝑌 )  →  𝐵  ∈  𝑌 ) | 
						
							| 13 |  | difsnen | ⊢ ( ( 𝑌  ∈  V  ∧  ( 𝑔 ‘ 𝐴 )  ∈  𝑌  ∧  𝐵  ∈  𝑌 )  →  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } )  ≈  ( 𝑌  ∖  { 𝐵 } ) ) | 
						
							| 14 | 7 11 12 13 | syl3anc | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  𝑔 : 𝑋 –1-1-onto→ 𝑌 )  →  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } )  ≈  ( 𝑌  ∖  { 𝐵 } ) ) | 
						
							| 15 |  | bren | ⊢ ( ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } )  ≈  ( 𝑌  ∖  { 𝐵 } )  ↔  ∃ ℎ ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) | 
						
							| 16 | 14 15 | sylib | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  𝑔 : 𝑋 –1-1-onto→ 𝑌 )  →  ∃ ℎ ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) | 
						
							| 17 |  | fvex | ⊢ ( 𝑔 ‘ 𝐴 )  ∈  V | 
						
							| 18 | 17 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( 𝑔 ‘ 𝐴 )  ∈  V ) | 
						
							| 19 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  𝐵  ∈  𝑌 ) | 
						
							| 20 |  | f1osng | ⊢ ( ( ( 𝑔 ‘ 𝐴 )  ∈  V  ∧  𝐵  ∈  𝑌 )  →  { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 } : { ( 𝑔 ‘ 𝐴 ) } –1-1-onto→ { 𝐵 } ) | 
						
							| 21 | 18 19 20 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 } : { ( 𝑔 ‘ 𝐴 ) } –1-1-onto→ { 𝐵 } ) | 
						
							| 22 |  | simprr | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) | 
						
							| 23 |  | disjdif | ⊢ ( { ( 𝑔 ‘ 𝐴 ) }  ∩  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) )  =  ∅ | 
						
							| 24 | 23 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( { ( 𝑔 ‘ 𝐴 ) }  ∩  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) )  =  ∅ ) | 
						
							| 25 |  | disjdif | ⊢ ( { 𝐵 }  ∩  ( 𝑌  ∖  { 𝐵 } ) )  =  ∅ | 
						
							| 26 | 25 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( { 𝐵 }  ∩  ( 𝑌  ∖  { 𝐵 } ) )  =  ∅ ) | 
						
							| 27 |  | f1oun | ⊢ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 } : { ( 𝑔 ‘ 𝐴 ) } –1-1-onto→ { 𝐵 }  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) )  ∧  ( ( { ( 𝑔 ‘ 𝐴 ) }  ∩  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) )  =  ∅  ∧  ( { 𝐵 }  ∩  ( 𝑌  ∖  { 𝐵 } ) )  =  ∅ ) )  →  ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ ) : ( { ( 𝑔 ‘ 𝐴 ) }  ∪  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) ) –1-1-onto→ ( { 𝐵 }  ∪  ( 𝑌  ∖  { 𝐵 } ) ) ) | 
						
							| 28 | 21 22 24 26 27 | syl22anc | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ ) : ( { ( 𝑔 ‘ 𝐴 ) }  ∪  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) ) –1-1-onto→ ( { 𝐵 }  ∪  ( 𝑌  ∖  { 𝐵 } ) ) ) | 
						
							| 29 | 8 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  𝑔 : 𝑋 ⟶ 𝑌 ) | 
						
							| 30 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 31 | 29 30 | ffvelcdmd | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( 𝑔 ‘ 𝐴 )  ∈  𝑌 ) | 
						
							| 32 |  | uncom | ⊢ ( { ( 𝑔 ‘ 𝐴 ) }  ∪  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) )  =  ( ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } )  ∪  { ( 𝑔 ‘ 𝐴 ) } ) | 
						
							| 33 |  | difsnid | ⊢ ( ( 𝑔 ‘ 𝐴 )  ∈  𝑌  →  ( ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } )  ∪  { ( 𝑔 ‘ 𝐴 ) } )  =  𝑌 ) | 
						
							| 34 | 32 33 | eqtrid | ⊢ ( ( 𝑔 ‘ 𝐴 )  ∈  𝑌  →  ( { ( 𝑔 ‘ 𝐴 ) }  ∪  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) )  =  𝑌 ) | 
						
							| 35 | 31 34 | syl | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( { ( 𝑔 ‘ 𝐴 ) }  ∪  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) )  =  𝑌 ) | 
						
							| 36 |  | uncom | ⊢ ( { 𝐵 }  ∪  ( 𝑌  ∖  { 𝐵 } ) )  =  ( ( 𝑌  ∖  { 𝐵 } )  ∪  { 𝐵 } ) | 
						
							| 37 |  | difsnid | ⊢ ( 𝐵  ∈  𝑌  →  ( ( 𝑌  ∖  { 𝐵 } )  ∪  { 𝐵 } )  =  𝑌 ) | 
						
							| 38 | 36 37 | eqtrid | ⊢ ( 𝐵  ∈  𝑌  →  ( { 𝐵 }  ∪  ( 𝑌  ∖  { 𝐵 } ) )  =  𝑌 ) | 
						
							| 39 | 19 38 | syl | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( { 𝐵 }  ∪  ( 𝑌  ∖  { 𝐵 } ) )  =  𝑌 ) | 
						
							| 40 |  | f1oeq23 | ⊢ ( ( ( { ( 𝑔 ‘ 𝐴 ) }  ∪  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) )  =  𝑌  ∧  ( { 𝐵 }  ∪  ( 𝑌  ∖  { 𝐵 } ) )  =  𝑌 )  →  ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ ) : ( { ( 𝑔 ‘ 𝐴 ) }  ∪  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) ) –1-1-onto→ ( { 𝐵 }  ∪  ( 𝑌  ∖  { 𝐵 } ) )  ↔  ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ ) : 𝑌 –1-1-onto→ 𝑌 ) ) | 
						
							| 41 | 35 39 40 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ ) : ( { ( 𝑔 ‘ 𝐴 ) }  ∪  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) ) –1-1-onto→ ( { 𝐵 }  ∪  ( 𝑌  ∖  { 𝐵 } ) )  ↔  ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ ) : 𝑌 –1-1-onto→ 𝑌 ) ) | 
						
							| 42 | 28 41 | mpbid | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ ) : 𝑌 –1-1-onto→ 𝑌 ) | 
						
							| 43 |  | simprl | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  𝑔 : 𝑋 –1-1-onto→ 𝑌 ) | 
						
							| 44 |  | f1oco | ⊢ ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ ) : 𝑌 –1-1-onto→ 𝑌  ∧  𝑔 : 𝑋 –1-1-onto→ 𝑌 )  →  ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 ) : 𝑋 –1-1-onto→ 𝑌 ) | 
						
							| 45 | 42 43 44 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 ) : 𝑋 –1-1-onto→ 𝑌 ) | 
						
							| 46 |  | f1ofn | ⊢ ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  →  𝑔  Fn  𝑋 ) | 
						
							| 47 | 46 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  𝑔  Fn  𝑋 ) | 
						
							| 48 |  | fvco2 | ⊢ ( ( 𝑔  Fn  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 ) ‘ 𝐴 )  =  ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) | 
						
							| 49 | 47 30 48 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 ) ‘ 𝐴 )  =  ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) | 
						
							| 50 |  | f1ofn | ⊢ ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 } : { ( 𝑔 ‘ 𝐴 ) } –1-1-onto→ { 𝐵 }  →  { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  Fn  { ( 𝑔 ‘ 𝐴 ) } ) | 
						
							| 51 | 21 50 | syl | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  Fn  { ( 𝑔 ‘ 𝐴 ) } ) | 
						
							| 52 |  | f1ofn | ⊢ ( ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } )  →  ℎ  Fn  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) ) | 
						
							| 53 | 52 | ad2antll | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ℎ  Fn  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) ) | 
						
							| 54 | 17 | snid | ⊢ ( 𝑔 ‘ 𝐴 )  ∈  { ( 𝑔 ‘ 𝐴 ) } | 
						
							| 55 | 54 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( 𝑔 ‘ 𝐴 )  ∈  { ( 𝑔 ‘ 𝐴 ) } ) | 
						
							| 56 |  | fvun1 | ⊢ ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  Fn  { ( 𝑔 ‘ 𝐴 ) }  ∧  ℎ  Fn  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } )  ∧  ( ( { ( 𝑔 ‘ 𝐴 ) }  ∩  ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) )  =  ∅  ∧  ( 𝑔 ‘ 𝐴 )  ∈  { ( 𝑔 ‘ 𝐴 ) } ) )  →  ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ ) ‘ ( 𝑔 ‘ 𝐴 ) )  =  ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 } ‘ ( 𝑔 ‘ 𝐴 ) ) ) | 
						
							| 57 | 51 53 24 55 56 | syl112anc | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ ) ‘ ( 𝑔 ‘ 𝐴 ) )  =  ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 } ‘ ( 𝑔 ‘ 𝐴 ) ) ) | 
						
							| 58 |  | fvsng | ⊢ ( ( ( 𝑔 ‘ 𝐴 )  ∈  V  ∧  𝐵  ∈  𝑌 )  →  ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 } ‘ ( 𝑔 ‘ 𝐴 ) )  =  𝐵 ) | 
						
							| 59 | 18 19 58 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 } ‘ ( 𝑔 ‘ 𝐴 ) )  =  𝐵 ) | 
						
							| 60 | 49 57 59 | 3eqtrd | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 ) ‘ 𝐴 )  =  𝐵 ) | 
						
							| 61 |  | snex | ⊢ { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∈  V | 
						
							| 62 |  | vex | ⊢ ℎ  ∈  V | 
						
							| 63 | 61 62 | unex | ⊢ ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∈  V | 
						
							| 64 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 65 | 63 64 | coex | ⊢ ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 )  ∈  V | 
						
							| 66 |  | f1oeq1 | ⊢ ( 𝑓  =  ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 )  →  ( 𝑓 : 𝑋 –1-1-onto→ 𝑌  ↔  ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 ) : 𝑋 –1-1-onto→ 𝑌 ) ) | 
						
							| 67 |  | fveq1 | ⊢ ( 𝑓  =  ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 )  →  ( 𝑓 ‘ 𝐴 )  =  ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 ) ‘ 𝐴 ) ) | 
						
							| 68 | 67 | eqeq1d | ⊢ ( 𝑓  =  ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 )  →  ( ( 𝑓 ‘ 𝐴 )  =  𝐵  ↔  ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 ) ‘ 𝐴 )  =  𝐵 ) ) | 
						
							| 69 | 66 68 | anbi12d | ⊢ ( 𝑓  =  ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 )  →  ( ( 𝑓 : 𝑋 –1-1-onto→ 𝑌  ∧  ( 𝑓 ‘ 𝐴 )  =  𝐵 )  ↔  ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 ) : 𝑋 –1-1-onto→ 𝑌  ∧  ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 ) ‘ 𝐴 )  =  𝐵 ) ) ) | 
						
							| 70 | 65 69 | spcev | ⊢ ( ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 ) : 𝑋 –1-1-onto→ 𝑌  ∧  ( ( ( { 〈 ( 𝑔 ‘ 𝐴 ) ,  𝐵 〉 }  ∪  ℎ )  ∘  𝑔 ) ‘ 𝐴 )  =  𝐵 )  →  ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌  ∧  ( 𝑓 ‘ 𝐴 )  =  𝐵 ) ) | 
						
							| 71 | 45 60 70 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  ( 𝑔 : 𝑋 –1-1-onto→ 𝑌  ∧  ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } ) ) )  →  ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌  ∧  ( 𝑓 ‘ 𝐴 )  =  𝐵 ) ) | 
						
							| 72 | 71 | expr | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  𝑔 : 𝑋 –1-1-onto→ 𝑌 )  →  ( ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } )  →  ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌  ∧  ( 𝑓 ‘ 𝐴 )  =  𝐵 ) ) ) | 
						
							| 73 | 72 | exlimdv | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  𝑔 : 𝑋 –1-1-onto→ 𝑌 )  →  ( ∃ ℎ ℎ : ( 𝑌  ∖  { ( 𝑔 ‘ 𝐴 ) } ) –1-1-onto→ ( 𝑌  ∖  { 𝐵 } )  →  ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌  ∧  ( 𝑓 ‘ 𝐴 )  =  𝐵 ) ) ) | 
						
							| 74 | 16 73 | mpd | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  ∧  𝑔 : 𝑋 –1-1-onto→ 𝑌 )  →  ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌  ∧  ( 𝑓 ‘ 𝐴 )  =  𝐵 ) ) | 
						
							| 75 | 3 74 | exlimddv | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝑋  ≈  𝑌 )  →  ∃ 𝑓 ( 𝑓 : 𝑋 –1-1-onto→ 𝑌  ∧  ( 𝑓 ‘ 𝐴 )  =  𝐵 ) ) |