Description: Equinumerous sets are equi-numerable. (Contributed by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ennum | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ dom card ↔ 𝐵 ∈ dom card ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enen2 | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝑥 ≈ 𝐴 ↔ 𝑥 ≈ 𝐵 ) ) | |
| 2 | 1 | rexbidv | ⊢ ( 𝐴 ≈ 𝐵 → ( ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ↔ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐵 ) ) |
| 3 | isnum2 | ⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ) | |
| 4 | isnum2 | ⊢ ( 𝐵 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐵 ) | |
| 5 | 2 3 4 | 3bitr4g | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ dom card ↔ 𝐵 ∈ dom card ) ) |