| Step | Hyp | Ref | Expression | 
						
							| 1 |  | enp1i.1 | ⊢ Ord  𝑀 | 
						
							| 2 |  | enp1i.2 | ⊢ 𝑁  =  suc  𝑀 | 
						
							| 3 |  | enp1i.3 | ⊢ ( ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀  →  𝜑 ) | 
						
							| 4 |  | enp1i.4 | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 5 | 2 | breq2i | ⊢ ( 𝐴  ≈  𝑁  ↔  𝐴  ≈  suc  𝑀 ) | 
						
							| 6 |  | encv | ⊢ ( 𝐴  ≈  suc  𝑀  →  ( 𝐴  ∈  V  ∧  suc  𝑀  ∈  V ) ) | 
						
							| 7 | 6 | simprd | ⊢ ( 𝐴  ≈  suc  𝑀  →  suc  𝑀  ∈  V ) | 
						
							| 8 |  | sssucid | ⊢ 𝑀  ⊆  suc  𝑀 | 
						
							| 9 |  | ssexg | ⊢ ( ( 𝑀  ⊆  suc  𝑀  ∧  suc  𝑀  ∈  V )  →  𝑀  ∈  V ) | 
						
							| 10 | 8 9 | mpan | ⊢ ( suc  𝑀  ∈  V  →  𝑀  ∈  V ) | 
						
							| 11 |  | elong | ⊢ ( 𝑀  ∈  V  →  ( 𝑀  ∈  On  ↔  Ord  𝑀 ) ) | 
						
							| 12 | 7 10 11 | 3syl | ⊢ ( 𝐴  ≈  suc  𝑀  →  ( 𝑀  ∈  On  ↔  Ord  𝑀 ) ) | 
						
							| 13 | 1 12 | mpbiri | ⊢ ( 𝐴  ≈  suc  𝑀  →  𝑀  ∈  On ) | 
						
							| 14 |  | rexdif1en | ⊢ ( ( 𝑀  ∈  On  ∧  𝐴  ≈  suc  𝑀 )  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) | 
						
							| 15 | 13 14 | mpancom | ⊢ ( 𝐴  ≈  suc  𝑀  →  ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) | 
						
							| 16 | 3 | reximi | ⊢ ( ∃ 𝑥  ∈  𝐴 ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀  →  ∃ 𝑥  ∈  𝐴 𝜑 ) | 
						
							| 17 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜑  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 18 | 4 | imp | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  𝜓 ) | 
						
							| 19 | 18 | eximi | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ∃ 𝑥 𝜓 ) | 
						
							| 20 | 17 19 | sylbi | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜑  →  ∃ 𝑥 𝜓 ) | 
						
							| 21 | 15 16 20 | 3syl | ⊢ ( 𝐴  ≈  suc  𝑀  →  ∃ 𝑥 𝜓 ) | 
						
							| 22 | 5 21 | sylbi | ⊢ ( 𝐴  ≈  𝑁  →  ∃ 𝑥 𝜓 ) |