Step |
Hyp |
Ref |
Expression |
1 |
|
enp1i.1 |
⊢ Ord 𝑀 |
2 |
|
enp1i.2 |
⊢ 𝑁 = suc 𝑀 |
3 |
|
enp1i.3 |
⊢ ( ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 → 𝜑 ) |
4 |
|
enp1i.4 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
5 |
2
|
breq2i |
⊢ ( 𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀 ) |
6 |
|
encv |
⊢ ( 𝐴 ≈ suc 𝑀 → ( 𝐴 ∈ V ∧ suc 𝑀 ∈ V ) ) |
7 |
6
|
simprd |
⊢ ( 𝐴 ≈ suc 𝑀 → suc 𝑀 ∈ V ) |
8 |
|
sssucid |
⊢ 𝑀 ⊆ suc 𝑀 |
9 |
|
ssexg |
⊢ ( ( 𝑀 ⊆ suc 𝑀 ∧ suc 𝑀 ∈ V ) → 𝑀 ∈ V ) |
10 |
8 9
|
mpan |
⊢ ( suc 𝑀 ∈ V → 𝑀 ∈ V ) |
11 |
|
elong |
⊢ ( 𝑀 ∈ V → ( 𝑀 ∈ On ↔ Ord 𝑀 ) ) |
12 |
7 10 11
|
3syl |
⊢ ( 𝐴 ≈ suc 𝑀 → ( 𝑀 ∈ On ↔ Ord 𝑀 ) ) |
13 |
1 12
|
mpbiri |
⊢ ( 𝐴 ≈ suc 𝑀 → 𝑀 ∈ On ) |
14 |
|
rexdif1en |
⊢ ( ( 𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
15 |
13 14
|
mpancom |
⊢ ( 𝐴 ≈ suc 𝑀 → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
16 |
3
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 → ∃ 𝑥 ∈ 𝐴 𝜑 ) |
17 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
18 |
4
|
imp |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) |
19 |
18
|
eximi |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 𝜓 ) |
20 |
17 19
|
sylbi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 𝜓 ) |
21 |
15 16 20
|
3syl |
⊢ ( 𝐴 ≈ suc 𝑀 → ∃ 𝑥 𝜓 ) |
22 |
5 21
|
sylbi |
⊢ ( 𝐴 ≈ 𝑁 → ∃ 𝑥 𝜓 ) |