| Step | Hyp | Ref | Expression | 
						
							| 1 |  | enp1iOLD.1 | ⊢ 𝑀  ∈  ω | 
						
							| 2 |  | enp1iOLD.2 | ⊢ 𝑁  =  suc  𝑀 | 
						
							| 3 |  | enp1iOLD.3 | ⊢ ( ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀  →  𝜑 ) | 
						
							| 4 |  | enp1iOLD.4 | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 5 |  | nsuceq0 | ⊢ suc  𝑀  ≠  ∅ | 
						
							| 6 |  | breq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ≈  𝑁  ↔  ∅  ≈  𝑁 ) ) | 
						
							| 7 |  | ensym | ⊢ ( ∅  ≈  𝑁  →  𝑁  ≈  ∅ ) | 
						
							| 8 |  | en0 | ⊢ ( 𝑁  ≈  ∅  ↔  𝑁  =  ∅ ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( ∅  ≈  𝑁  →  𝑁  =  ∅ ) | 
						
							| 10 | 2 9 | eqtr3id | ⊢ ( ∅  ≈  𝑁  →  suc  𝑀  =  ∅ ) | 
						
							| 11 | 6 10 | biimtrdi | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ≈  𝑁  →  suc  𝑀  =  ∅ ) ) | 
						
							| 12 | 11 | necon3ad | ⊢ ( 𝐴  =  ∅  →  ( suc  𝑀  ≠  ∅  →  ¬  𝐴  ≈  𝑁 ) ) | 
						
							| 13 | 5 12 | mpi | ⊢ ( 𝐴  =  ∅  →  ¬  𝐴  ≈  𝑁 ) | 
						
							| 14 | 13 | con2i | ⊢ ( 𝐴  ≈  𝑁  →  ¬  𝐴  =  ∅ ) | 
						
							| 15 |  | neq0 | ⊢ ( ¬  𝐴  =  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝐴 ) | 
						
							| 16 | 14 15 | sylib | ⊢ ( 𝐴  ≈  𝑁  →  ∃ 𝑥 𝑥  ∈  𝐴 ) | 
						
							| 17 | 2 | breq2i | ⊢ ( 𝐴  ≈  𝑁  ↔  𝐴  ≈  suc  𝑀 ) | 
						
							| 18 |  | dif1ennn | ⊢ ( ( 𝑀  ∈  ω  ∧  𝐴  ≈  suc  𝑀  ∧  𝑥  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) | 
						
							| 19 | 1 18 | mp3an1 | ⊢ ( ( 𝐴  ≈  suc  𝑀  ∧  𝑥  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝑥 } )  ≈  𝑀 ) | 
						
							| 20 | 19 3 | syl | ⊢ ( ( 𝐴  ≈  suc  𝑀  ∧  𝑥  ∈  𝐴 )  →  𝜑 ) | 
						
							| 21 | 20 | ex | ⊢ ( 𝐴  ≈  suc  𝑀  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 22 | 17 21 | sylbi | ⊢ ( 𝐴  ≈  𝑁  →  ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 23 | 22 4 | sylcom | ⊢ ( 𝐴  ≈  𝑁  →  ( 𝑥  ∈  𝐴  →  𝜓 ) ) | 
						
							| 24 | 23 | eximdv | ⊢ ( 𝐴  ≈  𝑁  →  ( ∃ 𝑥 𝑥  ∈  𝐴  →  ∃ 𝑥 𝜓 ) ) | 
						
							| 25 | 16 24 | mpd | ⊢ ( 𝐴  ≈  𝑁  →  ∃ 𝑥 𝜓 ) |