Metamath Proof Explorer


Theorem enpr1g

Description: { A , A } has only one element. (Contributed by FL, 15-Feb-2010)

Ref Expression
Assertion enpr1g ( 𝐴𝑉 → { 𝐴 , 𝐴 } ≈ 1o )

Proof

Step Hyp Ref Expression
1 dfsn2 { 𝐴 } = { 𝐴 , 𝐴 }
2 ensn1g ( 𝐴𝑉 → { 𝐴 } ≈ 1o )
3 1 2 eqbrtrrid ( 𝐴𝑉 → { 𝐴 , 𝐴 } ≈ 1o )