Metamath Proof Explorer


Theorem enpr2

Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d . (Contributed by FL, 17-Aug-2008) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 30-Dec-2024)

Ref Expression
Assertion enpr2 ( ( 𝐴𝐶𝐵𝐷𝐴𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o )

Proof

Step Hyp Ref Expression
1 df-ne ( 𝐴𝐵 ↔ ¬ 𝐴 = 𝐵 )
2 simp1 ( ( 𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵 ) → 𝐴𝐶 )
3 simp2 ( ( 𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵𝐷 )
4 simp3 ( ( 𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 = 𝐵 )
5 2 3 4 enpr2d ( ( 𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o )
6 1 5 syl3an3b ( ( 𝐴𝐶𝐵𝐷𝐴𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o )