Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d . (Contributed by FL, 17-Aug-2008) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 30-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | enpr2 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne | ⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) | |
2 | simp1 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝐶 ) | |
3 | simp2 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝐷 ) | |
4 | simp3 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 = 𝐵 ) | |
5 | 2 3 4 | enpr2d | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) |
6 | 1 5 | syl3an3b | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) |