Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
enpr2d
Metamath Proof Explorer
Description: A pair with distinct elements is equinumerous to ordinal two.
(Contributed by Rohan Ridenour , 3-Aug-2023) Avoid ax-un . (Revised by BTernaryTau , 23-Dec-2024)
Ref
Expression
Hypotheses
enpr2d.1
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 )
enpr2d.2
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 )
enpr2d.3
⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 )
Assertion
enpr2d
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≈ 2o )
Proof
Step
Hyp
Ref
Expression
1
enpr2d.1
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 )
2
enpr2d.2
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 )
3
enpr2d.3
⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 )
4
0ex
⊢ ∅ ∈ V
5
4
a1i
⊢ ( 𝜑 → ∅ ∈ V )
6
1oex
⊢ 1o ∈ V
7
6
a1i
⊢ ( 𝜑 → 1o ∈ V )
8
3
neqned
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 )
9
1n0
⊢ 1o ≠ ∅
10
9
necomi
⊢ ∅ ≠ 1o
11
10
a1i
⊢ ( 𝜑 → ∅ ≠ 1o )
12
1 2 5 7 8 11
en2prd
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≈ { ∅ , 1o } )
13
df2o3
⊢ 2o = { ∅ , 1o }
14
12 13
breqtrrdi
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≈ 2o )