| Step | Hyp | Ref | Expression | 
						
							| 1 |  | enpr2dOLD.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝐶 ) | 
						
							| 2 |  | enpr2dOLD.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝐷 ) | 
						
							| 3 |  | enpr2dOLD.3 | ⊢ ( 𝜑  →  ¬  𝐴  =  𝐵 ) | 
						
							| 4 |  | ensn1g | ⊢ ( 𝐴  ∈  𝐶  →  { 𝐴 }  ≈  1o ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝜑  →  { 𝐴 }  ≈  1o ) | 
						
							| 6 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 7 |  | en2sn | ⊢ ( ( 𝐵  ∈  𝐷  ∧  1o  ∈  On )  →  { 𝐵 }  ≈  { 1o } ) | 
						
							| 8 | 2 6 7 | sylancl | ⊢ ( 𝜑  →  { 𝐵 }  ≈  { 1o } ) | 
						
							| 9 | 3 | neqned | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 10 |  | disjsn2 | ⊢ ( 𝐴  ≠  𝐵  →  ( { 𝐴 }  ∩  { 𝐵 } )  =  ∅ ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  ( { 𝐴 }  ∩  { 𝐵 } )  =  ∅ ) | 
						
							| 12 | 6 | onirri | ⊢ ¬  1o  ∈  1o | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ¬  1o  ∈  1o ) | 
						
							| 14 |  | disjsn | ⊢ ( ( 1o  ∩  { 1o } )  =  ∅  ↔  ¬  1o  ∈  1o ) | 
						
							| 15 | 13 14 | sylibr | ⊢ ( 𝜑  →  ( 1o  ∩  { 1o } )  =  ∅ ) | 
						
							| 16 |  | unen | ⊢ ( ( ( { 𝐴 }  ≈  1o  ∧  { 𝐵 }  ≈  { 1o } )  ∧  ( ( { 𝐴 }  ∩  { 𝐵 } )  =  ∅  ∧  ( 1o  ∩  { 1o } )  =  ∅ ) )  →  ( { 𝐴 }  ∪  { 𝐵 } )  ≈  ( 1o  ∪  { 1o } ) ) | 
						
							| 17 | 5 8 11 15 16 | syl22anc | ⊢ ( 𝜑  →  ( { 𝐴 }  ∪  { 𝐵 } )  ≈  ( 1o  ∪  { 1o } ) ) | 
						
							| 18 |  | df-pr | ⊢ { 𝐴 ,  𝐵 }  =  ( { 𝐴 }  ∪  { 𝐵 } ) | 
						
							| 19 |  | df-suc | ⊢ suc  1o  =  ( 1o  ∪  { 1o } ) | 
						
							| 20 | 17 18 19 | 3brtr4g | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 }  ≈  suc  1o ) | 
						
							| 21 |  | df-2o | ⊢ 2o  =  suc  1o | 
						
							| 22 | 20 21 | breqtrrdi | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 }  ≈  2o ) |