Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | enqbreq | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( 〈 𝐴 , 𝐵 〉 ~Q 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 ·N 𝐷 ) = ( 𝐵 ·N 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enq | ⊢ ~Q = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 ·N 𝑢 ) = ( 𝑤 ·N 𝑣 ) ) ) } | |
2 | 1 | ecopoveq | ⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ ( 𝐶 ∈ N ∧ 𝐷 ∈ N ) ) → ( 〈 𝐴 , 𝐵 〉 ~Q 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 ·N 𝐷 ) = ( 𝐵 ·N 𝐶 ) ) ) |