Metamath Proof Explorer


Theorem enqbreq

Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion enqbreq ( ( ( 𝐴N𝐵N ) ∧ ( 𝐶N𝐷N ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ ~Q𝐶 , 𝐷 ⟩ ↔ ( 𝐴 ·N 𝐷 ) = ( 𝐵 ·N 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 df-enq ~Q = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑦 = ⟨ 𝑣 , 𝑢 ⟩ ) ∧ ( 𝑧 ·N 𝑢 ) = ( 𝑤 ·N 𝑣 ) ) ) }
2 1 ecopoveq ( ( ( 𝐴N𝐵N ) ∧ ( 𝐶N𝐷N ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ ~Q𝐶 , 𝐷 ⟩ ↔ ( 𝐴 ·N 𝐷 ) = ( 𝐵 ·N 𝐶 ) ) )