Step |
Hyp |
Ref |
Expression |
1 |
|
df-enq |
⊢ ~Q = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 ·N 𝑢 ) = ( 𝑤 ·N 𝑣 ) ) ) } |
2 |
|
mulcompi |
⊢ ( 𝑥 ·N 𝑦 ) = ( 𝑦 ·N 𝑥 ) |
3 |
|
mulclpi |
⊢ ( ( 𝑥 ∈ N ∧ 𝑦 ∈ N ) → ( 𝑥 ·N 𝑦 ) ∈ N ) |
4 |
|
mulasspi |
⊢ ( ( 𝑥 ·N 𝑦 ) ·N 𝑧 ) = ( 𝑥 ·N ( 𝑦 ·N 𝑧 ) ) |
5 |
|
mulcanpi |
⊢ ( ( 𝑥 ∈ N ∧ 𝑦 ∈ N ) → ( ( 𝑥 ·N 𝑦 ) = ( 𝑥 ·N 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
6 |
5
|
biimpd |
⊢ ( ( 𝑥 ∈ N ∧ 𝑦 ∈ N ) → ( ( 𝑥 ·N 𝑦 ) = ( 𝑥 ·N 𝑧 ) → 𝑦 = 𝑧 ) ) |
7 |
1 2 3 4 6
|
ecopover |
⊢ ~Q Er ( N × N ) |