| Step | Hyp | Ref | Expression | 
						
							| 1 |  | niex | ⊢ N  ∈  V | 
						
							| 2 | 1 1 | xpex | ⊢ ( N  ×  N )  ∈  V | 
						
							| 3 | 2 2 | xpex | ⊢ ( ( N  ×  N )  ×  ( N  ×  N ) )  ∈  V | 
						
							| 4 |  | df-enq | ⊢  ~Q   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  ( N  ×  N )  ∧  𝑦  ∈  ( N  ×  N ) )  ∧  ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥  =  〈 𝑧 ,  𝑤 〉  ∧  𝑦  =  〈 𝑣 ,  𝑢 〉 )  ∧  ( 𝑧  ·N  𝑢 )  =  ( 𝑤  ·N  𝑣 ) ) ) } | 
						
							| 5 |  | opabssxp | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  ( N  ×  N )  ∧  𝑦  ∈  ( N  ×  N ) )  ∧  ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥  =  〈 𝑧 ,  𝑤 〉  ∧  𝑦  =  〈 𝑣 ,  𝑢 〉 )  ∧  ( 𝑧  ·N  𝑢 )  =  ( 𝑤  ·N  𝑣 ) ) ) }  ⊆  ( ( N  ×  N )  ×  ( N  ×  N ) ) | 
						
							| 6 | 4 5 | eqsstri | ⊢  ~Q   ⊆  ( ( N  ×  N )  ×  ( N  ×  N ) ) | 
						
							| 7 | 3 6 | ssexi | ⊢  ~Q   ∈  V |