Description: Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | enrbreq | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( 〈 𝐴 , 𝐵 〉 ~R 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enr | ⊢ ~R = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) ) } | |
2 | 1 | ecopoveq | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( 〈 𝐴 , 𝐵 〉 ~R 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ) ) |