Step |
Hyp |
Ref |
Expression |
1 |
|
enrer |
⊢ ~R Er ( P × P ) |
2 |
1
|
a1i |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ~R Er ( P × P ) ) |
3 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → 〈 𝐴 , 𝐵 〉 ∈ ( P × P ) ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( P × P ) ) |
5 |
2 4
|
erth |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( 〈 𝐴 , 𝐵 〉 ~R 〈 𝐶 , 𝐷 〉 ↔ [ 〈 𝐴 , 𝐵 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ) ) |
6 |
|
enrbreq |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( 〈 𝐴 , 𝐵 〉 ~R 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ) ) |
7 |
5 6
|
bitr3d |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) → ( [ 〈 𝐴 , 𝐵 〉 ] ~R = [ 〈 𝐶 , 𝐷 〉 ] ~R ↔ ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ) ) |