Metamath Proof Explorer


Theorem enreffi

Description: Equinumerosity is reflexive for finite sets, proved without using the Axiom of Power Sets (unlike enrefg ). (Contributed by BTernaryTau, 8-Sep-2024)

Ref Expression
Assertion enreffi ( 𝐴 ∈ Fin → 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 f1oi ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴
2 f1oenfi ( ( 𝐴 ∈ Fin ∧ ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴 ) → 𝐴𝐴 )
3 1 2 mpan2 ( 𝐴 ∈ Fin → 𝐴𝐴 )