| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) |
| 2 |
1 1
|
breq12d |
⊢ ( 𝑥 = ∅ → ( 𝑥 ≈ 𝑥 ↔ ∅ ≈ ∅ ) ) |
| 3 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
| 4 |
3 3
|
breq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ 𝑥 ↔ 𝑦 ≈ 𝑦 ) ) |
| 5 |
|
id |
⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) |
| 6 |
5 5
|
breq12d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ≈ 𝑥 ↔ suc 𝑦 ≈ suc 𝑦 ) ) |
| 7 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
| 8 |
7 7
|
breq12d |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴 ) ) |
| 9 |
|
eqid |
⊢ ∅ = ∅ |
| 10 |
|
en0 |
⊢ ( ∅ ≈ ∅ ↔ ∅ = ∅ ) |
| 11 |
9 10
|
mpbir |
⊢ ∅ ≈ ∅ |
| 12 |
|
en2sn |
⊢ ( ( 𝑦 ∈ V ∧ 𝑦 ∈ V ) → { 𝑦 } ≈ { 𝑦 } ) |
| 13 |
12
|
el2v |
⊢ { 𝑦 } ≈ { 𝑦 } |
| 14 |
13
|
jctr |
⊢ ( 𝑦 ≈ 𝑦 → ( 𝑦 ≈ 𝑦 ∧ { 𝑦 } ≈ { 𝑦 } ) ) |
| 15 |
|
nnord |
⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) |
| 16 |
|
orddisj |
⊢ ( Ord 𝑦 → ( 𝑦 ∩ { 𝑦 } ) = ∅ ) |
| 17 |
15 16
|
syl |
⊢ ( 𝑦 ∈ ω → ( 𝑦 ∩ { 𝑦 } ) = ∅ ) |
| 18 |
17 17
|
jca |
⊢ ( 𝑦 ∈ ω → ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ∧ ( 𝑦 ∩ { 𝑦 } ) = ∅ ) ) |
| 19 |
|
unen |
⊢ ( ( ( 𝑦 ≈ 𝑦 ∧ { 𝑦 } ≈ { 𝑦 } ) ∧ ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ∧ ( 𝑦 ∩ { 𝑦 } ) = ∅ ) ) → ( 𝑦 ∪ { 𝑦 } ) ≈ ( 𝑦 ∪ { 𝑦 } ) ) |
| 20 |
14 18 19
|
syl2anr |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑦 ≈ 𝑦 ) → ( 𝑦 ∪ { 𝑦 } ) ≈ ( 𝑦 ∪ { 𝑦 } ) ) |
| 21 |
|
df-suc |
⊢ suc 𝑦 = ( 𝑦 ∪ { 𝑦 } ) |
| 22 |
20 21 21
|
3brtr4g |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑦 ≈ 𝑦 ) → suc 𝑦 ≈ suc 𝑦 ) |
| 23 |
22
|
ex |
⊢ ( 𝑦 ∈ ω → ( 𝑦 ≈ 𝑦 → suc 𝑦 ≈ suc 𝑦 ) ) |
| 24 |
2 4 6 8 11 23
|
finds |
⊢ ( 𝐴 ∈ ω → 𝐴 ≈ 𝐴 ) |