Description: The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of Gleason p. 126. (Contributed by NM, 3-Sep-1995) (Revised by Mario Carneiro, 6-Jul-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enrer | ⊢ ~R Er ( P × P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-enr | ⊢ ~R = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) ) } | |
| 2 | addcompr | ⊢ ( 𝑥 +P 𝑦 ) = ( 𝑦 +P 𝑥 ) | |
| 3 | addclpr | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑥 +P 𝑦 ) ∈ P ) | |
| 4 | addasspr | ⊢ ( ( 𝑥 +P 𝑦 ) +P 𝑧 ) = ( 𝑥 +P ( 𝑦 +P 𝑧 ) ) | |
| 5 | addcanpr | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑥 +P 𝑦 ) = ( 𝑥 +P 𝑧 ) → 𝑦 = 𝑧 ) ) | |
| 6 | 1 2 3 4 5 | ecopover | ⊢ ~R Er ( P × P ) |