Metamath Proof Explorer


Theorem enrer

Description: The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of Gleason p. 126. (Contributed by NM, 3-Sep-1995) (Revised by Mario Carneiro, 6-Jul-2015) (New usage is discouraged.)

Ref Expression
Assertion enrer ~R Er ( P × P )

Proof

Step Hyp Ref Expression
1 df-enr ~R = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑦 = ⟨ 𝑣 , 𝑢 ⟩ ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) ) }
2 addcompr ( 𝑥 +P 𝑦 ) = ( 𝑦 +P 𝑥 )
3 addclpr ( ( 𝑥P𝑦P ) → ( 𝑥 +P 𝑦 ) ∈ P )
4 addasspr ( ( 𝑥 +P 𝑦 ) +P 𝑧 ) = ( 𝑥 +P ( 𝑦 +P 𝑧 ) )
5 addcanpr ( ( 𝑥P𝑦P ) → ( ( 𝑥 +P 𝑦 ) = ( 𝑥 +P 𝑧 ) → 𝑦 = 𝑧 ) )
6 1 2 3 4 5 ecopover ~R Er ( P × P )