Description: Transitivity of equinumerosity and strict dominance. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ensdomtr | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≺ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) | |
2 | domsdomtr | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≺ 𝐶 ) | |
3 | 1 2 | sylan | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≺ 𝐶 ) |