Metamath Proof Explorer


Theorem ensdomtr

Description: Transitivity of equinumerosity and strict dominance. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion ensdomtr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 endom ( 𝐴𝐵𝐴𝐵 )
2 domsdomtr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
3 1 2 sylan ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )