Description: Obsolete version of ensn1 as of 23-Sep-2024. (Contributed by NM, 4-Nov-2002) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ensn1OLD.1 | ⊢ 𝐴 ∈ V | |
Assertion | ensn1OLD | ⊢ { 𝐴 } ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensn1OLD.1 | ⊢ 𝐴 ∈ V | |
2 | snex | ⊢ { 〈 𝐴 , ∅ 〉 } ∈ V | |
3 | f1oeq1 | ⊢ ( 𝑓 = { 〈 𝐴 , ∅ 〉 } → ( 𝑓 : { 𝐴 } –1-1-onto→ { ∅ } ↔ { 〈 𝐴 , ∅ 〉 } : { 𝐴 } –1-1-onto→ { ∅ } ) ) | |
4 | 0ex | ⊢ ∅ ∈ V | |
5 | 1 4 | f1osn | ⊢ { 〈 𝐴 , ∅ 〉 } : { 𝐴 } –1-1-onto→ { ∅ } |
6 | 2 3 5 | ceqsexv2d | ⊢ ∃ 𝑓 𝑓 : { 𝐴 } –1-1-onto→ { ∅ } |
7 | bren | ⊢ ( { 𝐴 } ≈ { ∅ } ↔ ∃ 𝑓 𝑓 : { 𝐴 } –1-1-onto→ { ∅ } ) | |
8 | 6 7 | mpbir | ⊢ { 𝐴 } ≈ { ∅ } |
9 | df1o2 | ⊢ 1o = { ∅ } | |
10 | 8 9 | breqtrri | ⊢ { 𝐴 } ≈ 1o |