Metamath Proof Explorer


Theorem ensn1g

Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004)

Ref Expression
Assertion ensn1g ( 𝐴𝑉 → { 𝐴 } ≈ 1o )

Proof

Step Hyp Ref Expression
1 sneq ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } )
2 1 breq1d ( 𝑥 = 𝐴 → ( { 𝑥 } ≈ 1o ↔ { 𝐴 } ≈ 1o ) )
3 vex 𝑥 ∈ V
4 3 ensn1 { 𝑥 } ≈ 1o
5 2 4 vtoclg ( 𝐴𝑉 → { 𝐴 } ≈ 1o )