Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | ensn1g | ⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ≈ 1o ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq | ⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) | |
2 | 1 | breq1d | ⊢ ( 𝑥 = 𝐴 → ( { 𝑥 } ≈ 1o ↔ { 𝐴 } ≈ 1o ) ) |
3 | vex | ⊢ 𝑥 ∈ V | |
4 | 3 | ensn1 | ⊢ { 𝑥 } ≈ 1o |
5 | 2 4 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ≈ 1o ) |