Metamath Proof Explorer


Theorem enssdom

Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998)

Ref Expression
Assertion enssdom ≈ ⊆ ≼

Proof

Step Hyp Ref Expression
1 relen Rel ≈
2 f1of1 ( 𝑓 : 𝑥1-1-onto𝑦𝑓 : 𝑥1-1𝑦 )
3 2 eximi ( ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 → ∃ 𝑓 𝑓 : 𝑥1-1𝑦 )
4 opabidw ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 } ↔ ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 )
5 opabidw ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1𝑦 } ↔ ∃ 𝑓 𝑓 : 𝑥1-1𝑦 )
6 3 4 5 3imtr4i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 } → ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1𝑦 } )
7 df-en ≈ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 }
8 7 eleq2i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ≈ ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 } )
9 df-dom ≼ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1𝑦 }
10 9 eleq2i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ≼ ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1𝑦 } )
11 6 8 10 3imtr4i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ≈ → ⟨ 𝑥 , 𝑦 ⟩ ∈ ≼ )
12 1 11 relssi ≈ ⊆ ≼