Metamath Proof Explorer


Theorem entrfi

Description: Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr ). (Contributed by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion entrfi ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 enfii ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵 ) → 𝐴 ∈ Fin )
2 1 3adant3 ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐶 ) → 𝐴 ∈ Fin )
3 entrfil ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
4 2 3 syld3an1 ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )