Metamath Proof Explorer


Theorem entri2

Description: Trichotomy of dominance and strict dominance. (Contributed by NM, 4-Jan-2004)

Ref Expression
Assertion entri2 ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 entric ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵𝐴𝐵𝐵𝐴 ) )
2 brdom2 ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) )
3 2 orbi1i ( ( 𝐴𝐵𝐵𝐴 ) ↔ ( ( 𝐴𝐵𝐴𝐵 ) ∨ 𝐵𝐴 ) )
4 df-3or ( ( 𝐴𝐵𝐴𝐵𝐵𝐴 ) ↔ ( ( 𝐴𝐵𝐴𝐵 ) ∨ 𝐵𝐴 ) )
5 3 4 bitr4i ( ( 𝐴𝐵𝐵𝐴 ) ↔ ( 𝐴𝐵𝐴𝐵𝐵𝐴 ) )
6 1 5 sylibr ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵𝐵𝐴 ) )