Metamath Proof Explorer


Theorem entric

Description: Trichotomy of equinumerosity and strict dominance. This theorem is equivalent to the Axiom of Choice. Theorem 8 of Suppes p. 242. (Contributed by NM, 4-Jan-2004)

Ref Expression
Assertion entric ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵𝐴𝐵𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 domtri ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
2 1 biimprd ( ( 𝐴𝑉𝐵𝑊 ) → ( ¬ 𝐵𝐴𝐴𝐵 ) )
3 brdom2 ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) )
4 2 3 syl6ib ( ( 𝐴𝑉𝐵𝑊 ) → ( ¬ 𝐵𝐴 → ( 𝐴𝐵𝐴𝐵 ) ) )
5 4 con1d ( ( 𝐴𝑉𝐵𝑊 ) → ( ¬ ( 𝐴𝐵𝐴𝐵 ) → 𝐵𝐴 ) )
6 5 orrd ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴𝐵𝐴𝐵 ) ∨ 𝐵𝐴 ) )
7 df-3or ( ( 𝐴𝐵𝐴𝐵𝐵𝐴 ) ↔ ( ( 𝐴𝐵𝐴𝐵 ) ∨ 𝐵𝐴 ) )
8 6 7 sylibr ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵𝐴𝐵𝐵𝐴 ) )