Step |
Hyp |
Ref |
Expression |
1 |
|
evenp1odd |
⊢ ( 𝐴 ∈ Even → ( 𝐴 + 1 ) ∈ Odd ) |
2 |
|
evenm1odd |
⊢ ( 𝐵 ∈ Even → ( 𝐵 − 1 ) ∈ Odd ) |
3 |
|
opoeALTV |
⊢ ( ( ( 𝐴 + 1 ) ∈ Odd ∧ ( 𝐵 − 1 ) ∈ Odd ) → ( ( 𝐴 + 1 ) + ( 𝐵 − 1 ) ) ∈ Even ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → ( ( 𝐴 + 1 ) + ( 𝐵 − 1 ) ) ∈ Even ) |
5 |
|
evenz |
⊢ ( 𝐴 ∈ Even → 𝐴 ∈ ℤ ) |
6 |
5
|
zcnd |
⊢ ( 𝐴 ∈ Even → 𝐴 ∈ ℂ ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → 𝐴 ∈ ℂ ) |
8 |
|
1cnd |
⊢ ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → 1 ∈ ℂ ) |
9 |
|
evenz |
⊢ ( 𝐵 ∈ Even → 𝐵 ∈ ℤ ) |
10 |
9
|
zcnd |
⊢ ( 𝐵 ∈ Even → 𝐵 ∈ ℂ ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → 𝐵 ∈ ℂ ) |
12 |
|
ppncan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 1 ) + ( 𝐵 − 1 ) ) = ( 𝐴 + 𝐵 ) ) |
13 |
12
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 1 ) + ( 𝐵 − 1 ) ) ∈ Even ↔ ( 𝐴 + 𝐵 ) ∈ Even ) ) |
14 |
7 8 11 13
|
syl3anc |
⊢ ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → ( ( ( 𝐴 + 1 ) + ( 𝐵 − 1 ) ) ∈ Even ↔ ( 𝐴 + 𝐵 ) ∈ Even ) ) |
15 |
4 14
|
mpbid |
⊢ ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → ( 𝐴 + 𝐵 ) ∈ Even ) |