Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) |
2 |
|
snssi |
⊢ ( 𝑧 ∈ 𝐴 → { 𝑧 } ⊆ 𝐴 ) |
3 |
2
|
anim2i |
⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ 𝑧 ∈ 𝐴 ) → ( { 𝑧 } ⊆ 𝑦 ∧ { 𝑧 } ⊆ 𝐴 ) ) |
4 |
|
ssin |
⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ { 𝑧 } ⊆ 𝐴 ) ↔ { 𝑧 } ⊆ ( 𝑦 ∩ 𝐴 ) ) |
5 |
|
vex |
⊢ 𝑧 ∈ V |
6 |
5
|
snss |
⊢ ( 𝑧 ∈ ( 𝑦 ∩ 𝐴 ) ↔ { 𝑧 } ⊆ ( 𝑦 ∩ 𝐴 ) ) |
7 |
4 6
|
bitr4i |
⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ { 𝑧 } ⊆ 𝐴 ) ↔ 𝑧 ∈ ( 𝑦 ∩ 𝐴 ) ) |
8 |
3 7
|
sylib |
⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ( 𝑦 ∩ 𝐴 ) ) |
9 |
8
|
ne0d |
⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 ∩ 𝐴 ) ≠ ∅ ) |
10 |
|
inss2 |
⊢ ( 𝑦 ∩ 𝐴 ) ⊆ 𝐴 |
11 |
|
vex |
⊢ 𝑦 ∈ V |
12 |
11
|
inex1 |
⊢ ( 𝑦 ∩ 𝐴 ) ∈ V |
13 |
12
|
epfrc |
⊢ ( ( E Fr 𝐴 ∧ ( 𝑦 ∩ 𝐴 ) ⊆ 𝐴 ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) |
14 |
10 13
|
mp3an2 |
⊢ ( ( E Fr 𝐴 ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) |
15 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴 ) ) |
16 |
15
|
anbi1i |
⊢ ( ( 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ) |
17 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ) ) |
18 |
16 17
|
bitri |
⊢ ( ( 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ) ) |
19 |
|
n0 |
⊢ ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) ) |
20 |
|
elinel1 |
⊢ ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → 𝑤 ∈ 𝑥 ) |
21 |
20
|
ancri |
⊢ ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) ) ) |
22 |
|
trel |
⊢ ( Tr 𝑦 → ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) → 𝑤 ∈ 𝑦 ) ) |
23 |
|
inass |
⊢ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ( 𝑦 ∩ ( 𝐴 ∩ 𝑥 ) ) |
24 |
|
incom |
⊢ ( 𝐴 ∩ 𝑥 ) = ( 𝑥 ∩ 𝐴 ) |
25 |
24
|
ineq2i |
⊢ ( 𝑦 ∩ ( 𝐴 ∩ 𝑥 ) ) = ( 𝑦 ∩ ( 𝑥 ∩ 𝐴 ) ) |
26 |
23 25
|
eqtri |
⊢ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ( 𝑦 ∩ ( 𝑥 ∩ 𝐴 ) ) |
27 |
26
|
eleq2i |
⊢ ( 𝑤 ∈ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ↔ 𝑤 ∈ ( 𝑦 ∩ ( 𝑥 ∩ 𝐴 ) ) ) |
28 |
|
elin |
⊢ ( 𝑤 ∈ ( 𝑦 ∩ ( 𝑥 ∩ 𝐴 ) ) ↔ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) ) ) |
29 |
27 28
|
bitr2i |
⊢ ( ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) ) ↔ 𝑤 ∈ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ) |
30 |
|
ne0i |
⊢ ( 𝑤 ∈ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) |
31 |
29 30
|
sylbi |
⊢ ( ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) ) → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) |
32 |
31
|
ex |
⊢ ( 𝑤 ∈ 𝑦 → ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) |
33 |
22 32
|
syl6 |
⊢ ( Tr 𝑦 → ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) |
34 |
33
|
expd |
⊢ ( Tr 𝑦 → ( 𝑤 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 → ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) ) |
35 |
34
|
com34 |
⊢ ( Tr 𝑦 → ( 𝑤 ∈ 𝑥 → ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( 𝑥 ∈ 𝑦 → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) ) |
36 |
35
|
impd |
⊢ ( Tr 𝑦 → ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) ) → ( 𝑥 ∈ 𝑦 → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) |
37 |
21 36
|
syl5 |
⊢ ( Tr 𝑦 → ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( 𝑥 ∈ 𝑦 → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) |
38 |
37
|
exlimdv |
⊢ ( Tr 𝑦 → ( ∃ 𝑤 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( 𝑥 ∈ 𝑦 → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) |
39 |
19 38
|
syl5bi |
⊢ ( Tr 𝑦 → ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ → ( 𝑥 ∈ 𝑦 → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) |
40 |
39
|
com23 |
⊢ ( Tr 𝑦 → ( 𝑥 ∈ 𝑦 → ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) |
41 |
40
|
imp |
⊢ ( ( Tr 𝑦 ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) |
42 |
41
|
necon4d |
⊢ ( ( Tr 𝑦 ∧ 𝑥 ∈ 𝑦 ) → ( ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ → ( 𝑥 ∩ 𝐴 ) = ∅ ) ) |
43 |
42
|
anim2d |
⊢ ( ( Tr 𝑦 ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
44 |
43
|
expimpd |
⊢ ( Tr 𝑦 → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
45 |
18 44
|
syl5bi |
⊢ ( Tr 𝑦 → ( ( 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
46 |
45
|
reximdv2 |
⊢ ( Tr 𝑦 → ( ∃ 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) |
47 |
14 46
|
syl5 |
⊢ ( Tr 𝑦 → ( ( E Fr 𝐴 ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) |
48 |
47
|
expcomd |
⊢ ( Tr 𝑦 → ( ( 𝑦 ∩ 𝐴 ) ≠ ∅ → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
49 |
9 48
|
syl5 |
⊢ ( Tr 𝑦 → ( ( { 𝑧 } ⊆ 𝑦 ∧ 𝑧 ∈ 𝐴 ) → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
50 |
49
|
expd |
⊢ ( Tr 𝑦 → ( { 𝑧 } ⊆ 𝑦 → ( 𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) ) |
51 |
50
|
impcom |
⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
52 |
51
|
3adant3 |
⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ Tr 𝑦 ∧ ∀ 𝑤 ( ( { 𝑧 } ⊆ 𝑤 ∧ Tr 𝑤 ) → 𝑦 ⊆ 𝑤 ) ) → ( 𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
53 |
|
snex |
⊢ { 𝑧 } ∈ V |
54 |
53
|
tz9.1 |
⊢ ∃ 𝑦 ( { 𝑧 } ⊆ 𝑦 ∧ Tr 𝑦 ∧ ∀ 𝑤 ( ( { 𝑧 } ⊆ 𝑤 ∧ Tr 𝑤 ) → 𝑦 ⊆ 𝑤 ) ) |
55 |
52 54
|
exlimiiv |
⊢ ( 𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) |
56 |
55
|
exlimiv |
⊢ ( ∃ 𝑧 𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) |
57 |
1 56
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) |
58 |
57
|
impcom |
⊢ ( ( E Fr 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |