Metamath Proof Explorer


Theorem epfrs

Description: The strong form of the Axiom of Regularity (no sethood requirement on A ), with the axiom itself present as an antecedent. See also zfregs . (Contributed by Mario Carneiro, 22-Mar-2013)

Ref Expression
Assertion epfrs ( ( E Fr 𝐴𝐴 ≠ ∅ ) → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧𝐴 )
2 snssi ( 𝑧𝐴 → { 𝑧 } ⊆ 𝐴 )
3 2 anim2i ( ( { 𝑧 } ⊆ 𝑦𝑧𝐴 ) → ( { 𝑧 } ⊆ 𝑦 ∧ { 𝑧 } ⊆ 𝐴 ) )
4 ssin ( ( { 𝑧 } ⊆ 𝑦 ∧ { 𝑧 } ⊆ 𝐴 ) ↔ { 𝑧 } ⊆ ( 𝑦𝐴 ) )
5 vex 𝑧 ∈ V
6 5 snss ( 𝑧 ∈ ( 𝑦𝐴 ) ↔ { 𝑧 } ⊆ ( 𝑦𝐴 ) )
7 4 6 bitr4i ( ( { 𝑧 } ⊆ 𝑦 ∧ { 𝑧 } ⊆ 𝐴 ) ↔ 𝑧 ∈ ( 𝑦𝐴 ) )
8 3 7 sylib ( ( { 𝑧 } ⊆ 𝑦𝑧𝐴 ) → 𝑧 ∈ ( 𝑦𝐴 ) )
9 8 ne0d ( ( { 𝑧 } ⊆ 𝑦𝑧𝐴 ) → ( 𝑦𝐴 ) ≠ ∅ )
10 inss2 ( 𝑦𝐴 ) ⊆ 𝐴
11 vex 𝑦 ∈ V
12 11 inex1 ( 𝑦𝐴 ) ∈ V
13 12 epfrc ( ( E Fr 𝐴 ∧ ( 𝑦𝐴 ) ⊆ 𝐴 ∧ ( 𝑦𝐴 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝑦𝐴 ) ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ∅ )
14 10 13 mp3an2 ( ( E Fr 𝐴 ∧ ( 𝑦𝐴 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝑦𝐴 ) ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ∅ )
15 elin ( 𝑥 ∈ ( 𝑦𝐴 ) ↔ ( 𝑥𝑦𝑥𝐴 ) )
16 15 anbi1i ( ( 𝑥 ∈ ( 𝑦𝐴 ) ∧ ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ∅ ) ↔ ( ( 𝑥𝑦𝑥𝐴 ) ∧ ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ∅ ) )
17 anass ( ( ( 𝑥𝑦𝑥𝐴 ) ∧ ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ∅ ) ↔ ( 𝑥𝑦 ∧ ( 𝑥𝐴 ∧ ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ∅ ) ) )
18 16 17 bitri ( ( 𝑥 ∈ ( 𝑦𝐴 ) ∧ ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ∅ ) ↔ ( 𝑥𝑦 ∧ ( 𝑥𝐴 ∧ ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ∅ ) ) )
19 n0 ( ( 𝑥𝐴 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝑥𝐴 ) )
20 elinel1 ( 𝑤 ∈ ( 𝑥𝐴 ) → 𝑤𝑥 )
21 20 ancri ( 𝑤 ∈ ( 𝑥𝐴 ) → ( 𝑤𝑥𝑤 ∈ ( 𝑥𝐴 ) ) )
22 trel ( Tr 𝑦 → ( ( 𝑤𝑥𝑥𝑦 ) → 𝑤𝑦 ) )
23 inass ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ( 𝑦 ∩ ( 𝐴𝑥 ) )
24 incom ( 𝐴𝑥 ) = ( 𝑥𝐴 )
25 24 ineq2i ( 𝑦 ∩ ( 𝐴𝑥 ) ) = ( 𝑦 ∩ ( 𝑥𝐴 ) )
26 23 25 eqtri ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ( 𝑦 ∩ ( 𝑥𝐴 ) )
27 26 eleq2i ( 𝑤 ∈ ( ( 𝑦𝐴 ) ∩ 𝑥 ) ↔ 𝑤 ∈ ( 𝑦 ∩ ( 𝑥𝐴 ) ) )
28 elin ( 𝑤 ∈ ( 𝑦 ∩ ( 𝑥𝐴 ) ) ↔ ( 𝑤𝑦𝑤 ∈ ( 𝑥𝐴 ) ) )
29 27 28 bitr2i ( ( 𝑤𝑦𝑤 ∈ ( 𝑥𝐴 ) ) ↔ 𝑤 ∈ ( ( 𝑦𝐴 ) ∩ 𝑥 ) )
30 ne0i ( 𝑤 ∈ ( ( 𝑦𝐴 ) ∩ 𝑥 ) → ( ( 𝑦𝐴 ) ∩ 𝑥 ) ≠ ∅ )
31 29 30 sylbi ( ( 𝑤𝑦𝑤 ∈ ( 𝑥𝐴 ) ) → ( ( 𝑦𝐴 ) ∩ 𝑥 ) ≠ ∅ )
32 31 ex ( 𝑤𝑦 → ( 𝑤 ∈ ( 𝑥𝐴 ) → ( ( 𝑦𝐴 ) ∩ 𝑥 ) ≠ ∅ ) )
33 22 32 syl6 ( Tr 𝑦 → ( ( 𝑤𝑥𝑥𝑦 ) → ( 𝑤 ∈ ( 𝑥𝐴 ) → ( ( 𝑦𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) )
34 33 expd ( Tr 𝑦 → ( 𝑤𝑥 → ( 𝑥𝑦 → ( 𝑤 ∈ ( 𝑥𝐴 ) → ( ( 𝑦𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) )
35 34 com34 ( Tr 𝑦 → ( 𝑤𝑥 → ( 𝑤 ∈ ( 𝑥𝐴 ) → ( 𝑥𝑦 → ( ( 𝑦𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) )
36 35 impd ( Tr 𝑦 → ( ( 𝑤𝑥𝑤 ∈ ( 𝑥𝐴 ) ) → ( 𝑥𝑦 → ( ( 𝑦𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) )
37 21 36 syl5 ( Tr 𝑦 → ( 𝑤 ∈ ( 𝑥𝐴 ) → ( 𝑥𝑦 → ( ( 𝑦𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) )
38 37 exlimdv ( Tr 𝑦 → ( ∃ 𝑤 𝑤 ∈ ( 𝑥𝐴 ) → ( 𝑥𝑦 → ( ( 𝑦𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) )
39 19 38 syl5bi ( Tr 𝑦 → ( ( 𝑥𝐴 ) ≠ ∅ → ( 𝑥𝑦 → ( ( 𝑦𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) )
40 39 com23 ( Tr 𝑦 → ( 𝑥𝑦 → ( ( 𝑥𝐴 ) ≠ ∅ → ( ( 𝑦𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) )
41 40 imp ( ( Tr 𝑦𝑥𝑦 ) → ( ( 𝑥𝐴 ) ≠ ∅ → ( ( 𝑦𝐴 ) ∩ 𝑥 ) ≠ ∅ ) )
42 41 necon4d ( ( Tr 𝑦𝑥𝑦 ) → ( ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ∅ → ( 𝑥𝐴 ) = ∅ ) )
43 42 anim2d ( ( Tr 𝑦𝑥𝑦 ) → ( ( 𝑥𝐴 ∧ ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ∅ ) → ( 𝑥𝐴 ∧ ( 𝑥𝐴 ) = ∅ ) ) )
44 43 expimpd ( Tr 𝑦 → ( ( 𝑥𝑦 ∧ ( 𝑥𝐴 ∧ ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ∅ ) ) → ( 𝑥𝐴 ∧ ( 𝑥𝐴 ) = ∅ ) ) )
45 18 44 syl5bi ( Tr 𝑦 → ( ( 𝑥 ∈ ( 𝑦𝐴 ) ∧ ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ∅ ) → ( 𝑥𝐴 ∧ ( 𝑥𝐴 ) = ∅ ) ) )
46 45 reximdv2 ( Tr 𝑦 → ( ∃ 𝑥 ∈ ( 𝑦𝐴 ) ( ( 𝑦𝐴 ) ∩ 𝑥 ) = ∅ → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ ) )
47 14 46 syl5 ( Tr 𝑦 → ( ( E Fr 𝐴 ∧ ( 𝑦𝐴 ) ≠ ∅ ) → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ ) )
48 47 expcomd ( Tr 𝑦 → ( ( 𝑦𝐴 ) ≠ ∅ → ( E Fr 𝐴 → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ ) ) )
49 9 48 syl5 ( Tr 𝑦 → ( ( { 𝑧 } ⊆ 𝑦𝑧𝐴 ) → ( E Fr 𝐴 → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ ) ) )
50 49 expd ( Tr 𝑦 → ( { 𝑧 } ⊆ 𝑦 → ( 𝑧𝐴 → ( E Fr 𝐴 → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ ) ) ) )
51 50 impcom ( ( { 𝑧 } ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑧𝐴 → ( E Fr 𝐴 → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ ) ) )
52 51 3adant3 ( ( { 𝑧 } ⊆ 𝑦 ∧ Tr 𝑦 ∧ ∀ 𝑤 ( ( { 𝑧 } ⊆ 𝑤 ∧ Tr 𝑤 ) → 𝑦𝑤 ) ) → ( 𝑧𝐴 → ( E Fr 𝐴 → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ ) ) )
53 snex { 𝑧 } ∈ V
54 53 tz9.1 𝑦 ( { 𝑧 } ⊆ 𝑦 ∧ Tr 𝑦 ∧ ∀ 𝑤 ( ( { 𝑧 } ⊆ 𝑤 ∧ Tr 𝑤 ) → 𝑦𝑤 ) )
55 52 54 exlimiiv ( 𝑧𝐴 → ( E Fr 𝐴 → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ ) )
56 55 exlimiv ( ∃ 𝑧 𝑧𝐴 → ( E Fr 𝐴 → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ ) )
57 1 56 sylbi ( 𝐴 ≠ ∅ → ( E Fr 𝐴 → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ ) )
58 57 impcom ( ( E Fr 𝐴𝐴 ≠ ∅ ) → ∃ 𝑥𝐴 ( 𝑥𝐴 ) = ∅ )