Step |
Hyp |
Ref |
Expression |
1 |
|
isepi.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
isepi.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
isepi.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
isepi.e |
⊢ 𝐸 = ( Epi ‘ 𝐶 ) |
5 |
|
isepi.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
6 |
|
isepi.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
isepi.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
1 2 3 4 5 6 7
|
isepi |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐸 𝑌 ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
9 |
|
simpl |
⊢ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑌 𝐻 𝑧 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑧 ) 𝑓 ) ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
10 |
8 9
|
syl6bi |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐸 𝑌 ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
11 |
10
|
ssrdv |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |