Metamath Proof Explorer


Theorem epii

Description: Property of an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses isepi.b 𝐵 = ( Base ‘ 𝐶 )
isepi.h 𝐻 = ( Hom ‘ 𝐶 )
isepi.o · = ( comp ‘ 𝐶 )
isepi.e 𝐸 = ( Epi ‘ 𝐶 )
isepi.c ( 𝜑𝐶 ∈ Cat )
isepi.x ( 𝜑𝑋𝐵 )
isepi.y ( 𝜑𝑌𝐵 )
epii.z ( 𝜑𝑍𝐵 )
epii.f ( 𝜑𝐹 ∈ ( 𝑋 𝐸 𝑌 ) )
epii.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑍 ) )
epii.k ( 𝜑𝐾 ∈ ( 𝑌 𝐻 𝑍 ) )
Assertion epii ( 𝜑 → ( ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ↔ 𝐺 = 𝐾 ) )

Proof

Step Hyp Ref Expression
1 isepi.b 𝐵 = ( Base ‘ 𝐶 )
2 isepi.h 𝐻 = ( Hom ‘ 𝐶 )
3 isepi.o · = ( comp ‘ 𝐶 )
4 isepi.e 𝐸 = ( Epi ‘ 𝐶 )
5 isepi.c ( 𝜑𝐶 ∈ Cat )
6 isepi.x ( 𝜑𝑋𝐵 )
7 isepi.y ( 𝜑𝑌𝐵 )
8 epii.z ( 𝜑𝑍𝐵 )
9 epii.f ( 𝜑𝐹 ∈ ( 𝑋 𝐸 𝑌 ) )
10 epii.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑍 ) )
11 epii.k ( 𝜑𝐾 ∈ ( 𝑌 𝐻 𝑍 ) )
12 eqid ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 )
13 1 3 12 8 7 6 oppcco ( 𝜑 → ( 𝐹 ( ⟨ 𝑍 , 𝑌 ⟩ ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐺 ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) )
14 1 3 12 8 7 6 oppcco ( 𝜑 → ( 𝐹 ( ⟨ 𝑍 , 𝑌 ⟩ ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐾 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) )
15 13 14 eqeq12d ( 𝜑 → ( ( 𝐹 ( ⟨ 𝑍 , 𝑌 ⟩ ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐺 ) = ( 𝐹 ( ⟨ 𝑍 , 𝑌 ⟩ ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐾 ) ↔ ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ) )
16 12 1 oppcbas 𝐵 = ( Base ‘ ( oppCat ‘ 𝐶 ) )
17 eqid ( Hom ‘ ( oppCat ‘ 𝐶 ) ) = ( Hom ‘ ( oppCat ‘ 𝐶 ) )
18 eqid ( comp ‘ ( oppCat ‘ 𝐶 ) ) = ( comp ‘ ( oppCat ‘ 𝐶 ) )
19 eqid ( Mono ‘ ( oppCat ‘ 𝐶 ) ) = ( Mono ‘ ( oppCat ‘ 𝐶 ) )
20 12 oppccat ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat )
21 5 20 syl ( 𝜑 → ( oppCat ‘ 𝐶 ) ∈ Cat )
22 12 5 19 4 oppcmon ( 𝜑 → ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝐸 𝑌 ) )
23 9 22 eleqtrrd ( 𝜑𝐹 ∈ ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) )
24 2 12 oppchom ( 𝑍 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) = ( 𝑌 𝐻 𝑍 )
25 10 24 eleqtrrdi ( 𝜑𝐺 ∈ ( 𝑍 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) )
26 11 24 eleqtrrdi ( 𝜑𝐾 ∈ ( 𝑍 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) )
27 16 17 18 19 21 7 6 8 23 25 26 moni ( 𝜑 → ( ( 𝐹 ( ⟨ 𝑍 , 𝑌 ⟩ ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐺 ) = ( 𝐹 ( ⟨ 𝑍 , 𝑌 ⟩ ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐾 ) ↔ 𝐺 = 𝐾 ) )
28 15 27 bitr3d ( 𝜑 → ( ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) ↔ 𝐺 = 𝐾 ) )