Step |
Hyp |
Ref |
Expression |
1 |
|
isepi.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
isepi.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
isepi.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
isepi.e |
⊢ 𝐸 = ( Epi ‘ 𝐶 ) |
5 |
|
isepi.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
6 |
|
isepi.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
isepi.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
|
epii.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
9 |
|
epii.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) |
10 |
|
epii.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) |
11 |
|
epii.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑌 𝐻 𝑍 ) ) |
12 |
|
eqid |
⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) |
13 |
1 3 12 8 7 6
|
oppcco |
⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐺 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
14 |
1 3 12 8 7 6
|
oppcco |
⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐾 ) = ( 𝐾 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐾 ) ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) |
16 |
12 1
|
oppcbas |
⊢ 𝐵 = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
17 |
|
eqid |
⊢ ( Hom ‘ ( oppCat ‘ 𝐶 ) ) = ( Hom ‘ ( oppCat ‘ 𝐶 ) ) |
18 |
|
eqid |
⊢ ( comp ‘ ( oppCat ‘ 𝐶 ) ) = ( comp ‘ ( oppCat ‘ 𝐶 ) ) |
19 |
|
eqid |
⊢ ( Mono ‘ ( oppCat ‘ 𝐶 ) ) = ( Mono ‘ ( oppCat ‘ 𝐶 ) ) |
20 |
12
|
oppccat |
⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
21 |
5 20
|
syl |
⊢ ( 𝜑 → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
22 |
12 5 19 4
|
oppcmon |
⊢ ( 𝜑 → ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝐸 𝑌 ) ) |
23 |
9 22
|
eleqtrrd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ) |
24 |
2 12
|
oppchom |
⊢ ( 𝑍 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) = ( 𝑌 𝐻 𝑍 ) |
25 |
10 24
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑍 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) ) |
26 |
11 24
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑍 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) ) |
27 |
16 17 18 19 21 7 6 8 23 25 26
|
moni |
⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐾 ) ↔ 𝐺 = 𝐾 ) ) |
28 |
15 27
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ↔ 𝐺 = 𝐾 ) ) |