Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | epini.1 | ⊢ 𝐴 ∈ V | |
Assertion | epini | ⊢ ( ◡ E “ { 𝐴 } ) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epini.1 | ⊢ 𝐴 ∈ V | |
2 | epin | ⊢ ( 𝐴 ∈ V → ( ◡ E “ { 𝐴 } ) = 𝐴 ) | |
3 | 1 2 | ax-mp | ⊢ ( ◡ E “ { 𝐴 } ) = 𝐴 |