Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
The membership relation (or epsilon relation)
epn0
Next ⟩
Partial and total orderings
Metamath Proof Explorer
Ascii
Structured
Theorem
epn0
Description:
The membership relation is nonempty.
(Contributed by
AV
, 19-Jun-2022)
Ref
Expression
Assertion
epn0
⊢
E ≠ ∅
Proof
Step
Hyp
Ref
Expression
1
0sn0ep
⊢
∅ E { ∅ }
2
brne0
⊢
( ∅ E { ∅ } → E ≠ ∅ )
3
1
2
ax-mp
⊢
E ≠ ∅