Step |
Hyp |
Ref |
Expression |
1 |
|
fr3nr |
⊢ ( ( E Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵 ) ) |
2 |
|
epelg |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝐵 E 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
3 |
2
|
3ad2ant2 |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐵 E 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
4 |
|
epelg |
⊢ ( 𝐷 ∈ 𝐴 → ( 𝐶 E 𝐷 ↔ 𝐶 ∈ 𝐷 ) ) |
5 |
4
|
3ad2ant3 |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐶 E 𝐷 ↔ 𝐶 ∈ 𝐷 ) ) |
6 |
|
epelg |
⊢ ( 𝐵 ∈ 𝐴 → ( 𝐷 E 𝐵 ↔ 𝐷 ∈ 𝐵 ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐷 E 𝐵 ↔ 𝐷 ∈ 𝐵 ) ) |
8 |
3 5 7
|
3anbi123d |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( ( 𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵 ) ↔ ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵 ) ) ) |
9 |
8
|
adantl |
⊢ ( ( E Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐵 E 𝐶 ∧ 𝐶 E 𝐷 ∧ 𝐷 E 𝐵 ) ↔ ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵 ) ) ) |
10 |
1 9
|
mtbid |
⊢ ( ( E Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐵 ) ) |