Metamath Proof Explorer


Theorem epne3

Description: A well-founded class contains no 3-cycle loops. (Contributed by NM, 19-Apr-1994) (Revised by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion epne3 ( ( E Fr 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ¬ ( 𝐵𝐶𝐶𝐷𝐷𝐵 ) )

Proof

Step Hyp Ref Expression
1 fr3nr ( ( E Fr 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ¬ ( 𝐵 E 𝐶𝐶 E 𝐷𝐷 E 𝐵 ) )
2 epelg ( 𝐶𝐴 → ( 𝐵 E 𝐶𝐵𝐶 ) )
3 2 3ad2ant2 ( ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) → ( 𝐵 E 𝐶𝐵𝐶 ) )
4 epelg ( 𝐷𝐴 → ( 𝐶 E 𝐷𝐶𝐷 ) )
5 4 3ad2ant3 ( ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) → ( 𝐶 E 𝐷𝐶𝐷 ) )
6 epelg ( 𝐵𝐴 → ( 𝐷 E 𝐵𝐷𝐵 ) )
7 6 3ad2ant1 ( ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) → ( 𝐷 E 𝐵𝐷𝐵 ) )
8 3 5 7 3anbi123d ( ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) → ( ( 𝐵 E 𝐶𝐶 E 𝐷𝐷 E 𝐵 ) ↔ ( 𝐵𝐶𝐶𝐷𝐷𝐵 ) ) )
9 8 adantl ( ( E Fr 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐵 E 𝐶𝐶 E 𝐷𝐷 E 𝐵 ) ↔ ( 𝐵𝐶𝐶𝐷𝐷𝐵 ) ) )
10 1 9 mtbid ( ( E Fr 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ¬ ( 𝐵𝐶𝐶𝐷𝐷𝐵 ) )