| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fr3nr | ⊢ ( (  E   Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ¬  ( 𝐵  E  𝐶  ∧  𝐶  E  𝐷  ∧  𝐷  E  𝐵 ) ) | 
						
							| 2 |  | epelg | ⊢ ( 𝐶  ∈  𝐴  →  ( 𝐵  E  𝐶  ↔  𝐵  ∈  𝐶 ) ) | 
						
							| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 )  →  ( 𝐵  E  𝐶  ↔  𝐵  ∈  𝐶 ) ) | 
						
							| 4 |  | epelg | ⊢ ( 𝐷  ∈  𝐴  →  ( 𝐶  E  𝐷  ↔  𝐶  ∈  𝐷 ) ) | 
						
							| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 )  →  ( 𝐶  E  𝐷  ↔  𝐶  ∈  𝐷 ) ) | 
						
							| 6 |  | epelg | ⊢ ( 𝐵  ∈  𝐴  →  ( 𝐷  E  𝐵  ↔  𝐷  ∈  𝐵 ) ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 )  →  ( 𝐷  E  𝐵  ↔  𝐷  ∈  𝐵 ) ) | 
						
							| 8 | 3 5 7 | 3anbi123d | ⊢ ( ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 )  →  ( ( 𝐵  E  𝐶  ∧  𝐶  E  𝐷  ∧  𝐷  E  𝐵 )  ↔  ( 𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐷  ∧  𝐷  ∈  𝐵 ) ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( (  E   Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( ( 𝐵  E  𝐶  ∧  𝐶  E  𝐷  ∧  𝐷  E  𝐵 )  ↔  ( 𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐷  ∧  𝐷  ∈  𝐵 ) ) ) | 
						
							| 10 | 1 9 | mtbid | ⊢ ( (  E   Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ¬  ( 𝐵  ∈  𝐶  ∧  𝐶  ∈  𝐷  ∧  𝐷  ∈  𝐵 ) ) |