Description: The sum of an even and an odd is odd. (Contributed by AV, 24-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | epoo | ⊢ ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → ( 𝐴 + 𝐵 ) ∈ Odd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evenz | ⊢ ( 𝐴 ∈ Even → 𝐴 ∈ ℤ ) | |
2 | 1 | zcnd | ⊢ ( 𝐴 ∈ Even → 𝐴 ∈ ℂ ) |
3 | oddz | ⊢ ( 𝐵 ∈ Odd → 𝐵 ∈ ℤ ) | |
4 | 3 | zcnd | ⊢ ( 𝐵 ∈ Odd → 𝐵 ∈ ℂ ) |
5 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) | |
6 | 2 4 5 | syl2an | ⊢ ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
7 | opeoALTV | ⊢ ( ( 𝐵 ∈ Odd ∧ 𝐴 ∈ Even ) → ( 𝐵 + 𝐴 ) ∈ Odd ) | |
8 | 7 | ancoms | ⊢ ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → ( 𝐵 + 𝐴 ) ∈ Odd ) |
9 | 6 8 | eqeltrd | ⊢ ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → ( 𝐴 + 𝐵 ) ∈ Odd ) |