Metamath Proof Explorer


Theorem epoo

Description: The sum of an even and an odd is odd. (Contributed by AV, 24-Jul-2020)

Ref Expression
Assertion epoo ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → ( 𝐴 + 𝐵 ) ∈ Odd )

Proof

Step Hyp Ref Expression
1 evenz ( 𝐴 ∈ Even → 𝐴 ∈ ℤ )
2 1 zcnd ( 𝐴 ∈ Even → 𝐴 ∈ ℂ )
3 oddz ( 𝐵 ∈ Odd → 𝐵 ∈ ℤ )
4 3 zcnd ( 𝐵 ∈ Odd → 𝐵 ∈ ℂ )
5 addcom ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) )
6 2 4 5 syl2an ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) )
7 opeoALTV ( ( 𝐵 ∈ Odd ∧ 𝐴 ∈ Even ) → ( 𝐵 + 𝐴 ) ∈ Odd )
8 7 ancoms ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → ( 𝐵 + 𝐴 ) ∈ Odd )
9 6 8 eqeltrd ( ( 𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → ( 𝐴 + 𝐵 ) ∈ Odd )