Metamath Proof Explorer


Theorem epos

Description: Euler's constant _e is greater than 0. (Contributed by Jeff Hankins, 22-Nov-2008)

Ref Expression
Assertion epos 0 < e

Proof

Step Hyp Ref Expression
1 2pos 0 < 2
2 egt2lt3 ( 2 < e ∧ e < 3 )
3 2 simpli 2 < e
4 0re 0 ∈ ℝ
5 2re 2 ∈ ℝ
6 ere e ∈ ℝ
7 4 5 6 lttri ( ( 0 < 2 ∧ 2 < e ) → 0 < e )
8 1 3 7 mp2an 0 < e