Metamath Proof Explorer


Theorem epse

Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion epse E Se 𝐴

Proof

Step Hyp Ref Expression
1 epel ( 𝑦 E 𝑥𝑦𝑥 )
2 1 bicomi ( 𝑦𝑥𝑦 E 𝑥 )
3 2 abbi2i 𝑥 = { 𝑦𝑦 E 𝑥 }
4 vex 𝑥 ∈ V
5 3 4 eqeltrri { 𝑦𝑦 E 𝑥 } ∈ V
6 rabssab { 𝑦𝐴𝑦 E 𝑥 } ⊆ { 𝑦𝑦 E 𝑥 }
7 5 6 ssexi { 𝑦𝐴𝑦 E 𝑥 } ∈ V
8 7 rgenw 𝑥𝐴 { 𝑦𝐴𝑦 E 𝑥 } ∈ V
9 df-se ( E Se 𝐴 ↔ ∀ 𝑥𝐴 { 𝑦𝐴𝑦 E 𝑥 } ∈ V )
10 8 9 mpbir E Se 𝐴