| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssrab |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ↔ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) |
| 2 |
|
eleq2 |
⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ∪ 𝑦 ) ) |
| 3 |
|
eqeq1 |
⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑥 = 𝐴 ↔ ∪ 𝑦 = 𝐴 ) ) |
| 4 |
2 3
|
imbi12d |
⊢ ( 𝑥 = ∪ 𝑦 → ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ↔ ( 𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 = 𝐴 ) ) ) |
| 5 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → 𝑦 ⊆ 𝒫 𝐴 ) |
| 6 |
|
sspwuni |
⊢ ( 𝑦 ⊆ 𝒫 𝐴 ↔ ∪ 𝑦 ⊆ 𝐴 ) |
| 7 |
5 6
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ∪ 𝑦 ⊆ 𝐴 ) |
| 8 |
|
vuniex |
⊢ ∪ 𝑦 ∈ V |
| 9 |
8
|
elpw |
⊢ ( ∪ 𝑦 ∈ 𝒫 𝐴 ↔ ∪ 𝑦 ⊆ 𝐴 ) |
| 10 |
7 9
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ∪ 𝑦 ∈ 𝒫 𝐴 ) |
| 11 |
|
eluni2 |
⊢ ( 𝑃 ∈ ∪ 𝑦 ↔ ∃ 𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 ) |
| 12 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ ∃ 𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 ) → ∃ 𝑥 ∈ 𝑦 ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ 𝑃 ∈ 𝑥 ) ) |
| 13 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) → ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) |
| 14 |
13
|
impr |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ 𝑃 ∈ 𝑥 ) ) → 𝑥 = 𝐴 ) |
| 15 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝑦 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ 𝑃 ∈ 𝑥 ) ) → 𝑥 ⊆ ∪ 𝑦 ) |
| 17 |
14 16
|
eqsstrrd |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ 𝑃 ∈ 𝑥 ) ) → 𝐴 ⊆ ∪ 𝑦 ) |
| 18 |
17
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ 𝑦 ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ 𝑃 ∈ 𝑥 ) → 𝐴 ⊆ ∪ 𝑦 ) |
| 19 |
12 18
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ ∃ 𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 ) → 𝐴 ⊆ ∪ 𝑦 ) |
| 20 |
19
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) → ( ∃ 𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 → 𝐴 ⊆ ∪ 𝑦 ) ) |
| 21 |
20
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ( ∃ 𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 → 𝐴 ⊆ ∪ 𝑦 ) ) |
| 22 |
11 21
|
biimtrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ( 𝑃 ∈ ∪ 𝑦 → 𝐴 ⊆ ∪ 𝑦 ) ) |
| 23 |
22 7
|
jctild |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ( 𝑃 ∈ ∪ 𝑦 → ( ∪ 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) ) |
| 24 |
|
eqss |
⊢ ( ∪ 𝑦 = 𝐴 ↔ ( ∪ 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) |
| 25 |
23 24
|
imbitrrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ( 𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 = 𝐴 ) ) |
| 26 |
4 10 25
|
elrabd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) |
| 27 |
26
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) |
| 28 |
1 27
|
biimtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) |
| 29 |
28
|
alrimiv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) |
| 30 |
|
inss1 |
⊢ ( 𝑦 ∩ 𝑧 ) ⊆ 𝑦 |
| 31 |
|
simprll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → 𝑦 ∈ 𝒫 𝐴 ) |
| 32 |
31
|
elpwid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → 𝑦 ⊆ 𝐴 ) |
| 33 |
30 32
|
sstrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
| 34 |
|
vex |
⊢ 𝑦 ∈ V |
| 35 |
34
|
inex1 |
⊢ ( 𝑦 ∩ 𝑧 ) ∈ V |
| 36 |
35
|
elpw |
⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ↔ ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
| 37 |
33 36
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ) |
| 38 |
|
elin |
⊢ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ↔ ( 𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧 ) ) |
| 39 |
|
simprlr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) |
| 40 |
|
simprrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) |
| 41 |
39 40
|
anim12d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( ( 𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧 ) → ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐴 ) ) ) |
| 42 |
|
ineq12 |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐴 ) → ( 𝑦 ∩ 𝑧 ) = ( 𝐴 ∩ 𝐴 ) ) |
| 43 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 44 |
42 43
|
eqtrdi |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐴 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) |
| 45 |
41 44
|
syl6 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( ( 𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) |
| 46 |
38 45
|
biimtrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) |
| 47 |
37 46
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) ) |
| 48 |
47
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) → ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) ) ) |
| 49 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦 ) ) |
| 50 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) |
| 51 |
49 50
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ↔ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ) |
| 52 |
51
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ) |
| 53 |
|
eleq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧 ) ) |
| 54 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝐴 ↔ 𝑧 = 𝐴 ) ) |
| 55 |
53 54
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ↔ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) |
| 56 |
55
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) |
| 57 |
52 56
|
anbi12i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ↔ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) |
| 58 |
|
eleq2 |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ) ) |
| 59 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝑥 = 𝐴 ↔ ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) |
| 60 |
58 59
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ↔ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) ) |
| 61 |
60
|
elrab |
⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ↔ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) ) |
| 62 |
48 57 61
|
3imtr4g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) → ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) |
| 63 |
62
|
ralrimivv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) |
| 64 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝒫 𝐴 ∈ V ) |
| 66 |
|
rabexg |
⊢ ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ V ) |
| 67 |
65 66
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ V ) |
| 68 |
|
istopg |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ V → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) ) |
| 69 |
67 68
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) ) |
| 70 |
29 63 69
|
mpbir2and |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ Top ) |
| 71 |
|
eleq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝐴 ) ) |
| 72 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐴 ↔ 𝐴 = 𝐴 ) ) |
| 73 |
71 72
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ↔ ( 𝑃 ∈ 𝐴 → 𝐴 = 𝐴 ) ) ) |
| 74 |
|
pwidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴 ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 ∈ 𝒫 𝐴 ) |
| 76 |
|
eqidd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 = 𝐴 ) |
| 77 |
76
|
a1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑃 ∈ 𝐴 → 𝐴 = 𝐴 ) ) |
| 78 |
73 75 77
|
elrabd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) |
| 79 |
|
elssuni |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) |
| 80 |
78 79
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) |
| 81 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ⊆ 𝒫 𝐴 |
| 82 |
|
sspwuni |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ⊆ 𝒫 𝐴 ↔ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ⊆ 𝐴 ) |
| 83 |
81 82
|
mpbi |
⊢ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ⊆ 𝐴 |
| 84 |
83
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ⊆ 𝐴 ) |
| 85 |
80 84
|
eqssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) |
| 86 |
|
istopon |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ ( TopOn ‘ 𝐴 ) ↔ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ Top ∧ 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) |
| 87 |
70 85 86
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ ( TopOn ‘ 𝐴 ) ) |