Step |
Hyp |
Ref |
Expression |
1 |
|
onfr |
⊢ E Fr On |
2 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
3 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
4 |
|
ordtri3or |
⊢ ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
5 |
|
epel |
⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) |
6 |
|
biid |
⊢ ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) |
7 |
|
epel |
⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) |
8 |
5 6 7
|
3orbi123i |
⊢ ( ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ↔ ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
9 |
4 8
|
sylibr |
⊢ ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) |
10 |
2 3 9
|
syl2an |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) |
11 |
10
|
rgen2 |
⊢ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) |
12 |
|
dfwe2 |
⊢ ( E We On ↔ ( E Fr On ∧ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) ) |
13 |
1 11 12
|
mpbir2an |
⊢ E We On |