| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onfr |
⊢ E Fr On |
| 2 |
|
df-po |
⊢ ( E Po On ↔ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
| 3 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
| 4 |
|
ordirr |
⊢ ( Ord 𝑥 → ¬ 𝑥 ∈ 𝑥 ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑥 ∈ On → ¬ 𝑥 ∈ 𝑥 ) |
| 6 |
|
epel |
⊢ ( 𝑥 E 𝑥 ↔ 𝑥 ∈ 𝑥 ) |
| 7 |
5 6
|
sylnibr |
⊢ ( 𝑥 ∈ On → ¬ 𝑥 E 𝑥 ) |
| 8 |
|
ontr1 |
⊢ ( 𝑧 ∈ On → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 9 |
|
epel |
⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) |
| 10 |
|
epel |
⊢ ( 𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧 ) |
| 11 |
9 10
|
anbi12i |
⊢ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) ) |
| 12 |
|
epel |
⊢ ( 𝑥 E 𝑧 ↔ 𝑥 ∈ 𝑧 ) |
| 13 |
8 11 12
|
3imtr4g |
⊢ ( 𝑧 ∈ On → ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) |
| 14 |
7 13
|
anim12i |
⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
| 15 |
14
|
ralrimiva |
⊢ ( 𝑥 ∈ On → ∀ 𝑧 ∈ On ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
| 16 |
15
|
ralrimivw |
⊢ ( 𝑥 ∈ On → ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
| 17 |
2 16
|
mprgbir |
⊢ E Po On |
| 18 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
| 19 |
|
ordtri3or |
⊢ ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
| 20 |
|
biid |
⊢ ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) |
| 21 |
|
epel |
⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) |
| 22 |
9 20 21
|
3orbi123i |
⊢ ( ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ↔ ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
| 23 |
19 22
|
sylibr |
⊢ ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) |
| 24 |
3 18 23
|
syl2an |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) |
| 25 |
24
|
rgen2 |
⊢ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) |
| 26 |
|
df-so |
⊢ ( E Or On ↔ ( E Po On ∧ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) ) |
| 27 |
17 25 26
|
mpbir2an |
⊢ E Or On |
| 28 |
|
df-we |
⊢ ( E We On ↔ ( E Fr On ∧ E Or On ) ) |
| 29 |
1 27 28
|
mpbir2an |
⊢ E We On |