| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onfr | ⊢  E   Fr  On | 
						
							| 2 |  | eloni | ⊢ ( 𝑥  ∈  On  →  Ord  𝑥 ) | 
						
							| 3 |  | eloni | ⊢ ( 𝑦  ∈  On  →  Ord  𝑦 ) | 
						
							| 4 |  | ordtri3or | ⊢ ( ( Ord  𝑥  ∧  Ord  𝑦 )  →  ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) | 
						
							| 5 |  | epel | ⊢ ( 𝑥  E  𝑦  ↔  𝑥  ∈  𝑦 ) | 
						
							| 6 |  | biid | ⊢ ( 𝑥  =  𝑦  ↔  𝑥  =  𝑦 ) | 
						
							| 7 |  | epel | ⊢ ( 𝑦  E  𝑥  ↔  𝑦  ∈  𝑥 ) | 
						
							| 8 | 5 6 7 | 3orbi123i | ⊢ ( ( 𝑥  E  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  E  𝑥 )  ↔  ( 𝑥  ∈  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  ∈  𝑥 ) ) | 
						
							| 9 | 4 8 | sylibr | ⊢ ( ( Ord  𝑥  ∧  Ord  𝑦 )  →  ( 𝑥  E  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  E  𝑥 ) ) | 
						
							| 10 | 2 3 9 | syl2an | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝑥  E  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  E  𝑥 ) ) | 
						
							| 11 | 10 | rgen2 | ⊢ ∀ 𝑥  ∈  On ∀ 𝑦  ∈  On ( 𝑥  E  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  E  𝑥 ) | 
						
							| 12 |  | dfwe2 | ⊢ (  E   We  On  ↔  (  E   Fr  On  ∧  ∀ 𝑥  ∈  On ∀ 𝑦  ∈  On ( 𝑥  E  𝑦  ∨  𝑥  =  𝑦  ∨  𝑦  E  𝑥 ) ) ) | 
						
							| 13 | 1 11 12 | mpbir2an | ⊢  E   We  On |