Metamath Proof Explorer


Theorem eq0

Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of Suppes p. 22. (Contributed by NM, 29-Aug-1993) Avoid ax-11 , ax-12 . (Revised by Gino Giotto and Steven Nguyen, 28-Jun-2024) Avoid ax-8 , df-clel . (Revised by Gino Giotto, 6-Sep-2024)

Ref Expression
Assertion eq0 ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 dfnul4 ∅ = { 𝑦 ∣ ⊥ }
2 1 eqeq2i ( 𝐴 = ∅ ↔ 𝐴 = { 𝑦 ∣ ⊥ } )
3 dfcleq ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) )
4 df-clab ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ [ 𝑥 / 𝑦 ] ⊥ )
5 sbv ( [ 𝑥 / 𝑦 ] ⊥ ↔ ⊥ )
6 4 5 bitri ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ ⊥ )
7 6 bibi2i ( ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ( 𝑥𝐴 ↔ ⊥ ) )
8 nbfal ( ¬ 𝑥𝐴 ↔ ( 𝑥𝐴 ↔ ⊥ ) )
9 7 8 bitr4i ( ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ¬ 𝑥𝐴 )
10 9 albii ( ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ∀ 𝑥 ¬ 𝑥𝐴 )
11 3 10 bitri ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ¬ 𝑥𝐴 )
12 2 11 bitri ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )