Metamath Proof Explorer


Theorem eq0

Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of Suppes p. 22. (Contributed by NM, 29-Aug-1993) Avoid ax-11 , ax-12 . (Revised by GG and Steven Nguyen, 28-Jun-2024) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)

Ref Expression
Assertion eq0 ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 dfnul4 ∅ = { 𝑦 ∣ ⊥ }
2 1 eqeq2i ( 𝐴 = ∅ ↔ 𝐴 = { 𝑦 ∣ ⊥ } )
3 biidd ( 𝑦 = 𝑥 → ( ⊥ ↔ ⊥ ) )
4 3 eqabbw ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ( 𝑥𝐴 ↔ ⊥ ) )
5 nbfal ( ¬ 𝑥𝐴 ↔ ( 𝑥𝐴 ↔ ⊥ ) )
6 5 albii ( ∀ 𝑥 ¬ 𝑥𝐴 ↔ ∀ 𝑥 ( 𝑥𝐴 ↔ ⊥ ) )
7 4 6 bitr4i ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ¬ 𝑥𝐴 )
8 2 7 bitri ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )