Step |
Hyp |
Ref |
Expression |
1 |
|
dfnul4 |
⊢ ∅ = { 𝑦 ∣ ⊥ } |
2 |
1
|
eqeq2i |
⊢ ( 𝐴 = ∅ ↔ 𝐴 = { 𝑦 ∣ ⊥ } ) |
3 |
|
dfcleq |
⊢ ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ) |
4 |
|
df-clab |
⊢ ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ [ 𝑥 / 𝑦 ] ⊥ ) |
5 |
|
sbv |
⊢ ( [ 𝑥 / 𝑦 ] ⊥ ↔ ⊥ ) |
6 |
4 5
|
bitri |
⊢ ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ ⊥ ) |
7 |
6
|
bibi2i |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) |
8 |
|
nbfal |
⊢ ( ¬ 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) |
9 |
7 8
|
bitr4i |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ¬ 𝑥 ∈ 𝐴 ) |
10 |
9
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
11 |
3 10
|
bitri |
⊢ ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
12 |
2 11
|
bitri |
⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |